摘要
We investigated the relationship between solar activity, total ozone, and solar ultraviolet B (UV-B) radiation from the perspective of multi-fractality. Fractal properties are observed in the time series of the dynamics of complex systems. To detect the changes in fractality, we performed a multifractal analysis using a wavelet transform. The changes in fractality indicated that solar activity was closely related to the total ozone and that the total ozone had a strong effect on UV-B radiation. For high solar activity, the F10.7 flux and global total ozone exhibited monofractality. The F10.7 flux and total ozone also increased, and a change from multifractality to monofractality was observed. This corresponded to the formation of the order. The strong interactions between the solar flux and ozone occur during the high solar activity. In contrast, UV-B radiation increased and showed multifractality, when fluctuations in UV-B radiation became large. For low solar activity, the F10.7 flux and total ozone exhibited multifractality, and UV-B radiation exhibited monofractality. Hence, the change in fractality of the F10.7 flux and total ozone was the opposite of UV-B radiation. A significant change in fractality for F10.7 flux and SSN, which had a significant fluctuation and a slight change in fractality for UV-B radiation, and total ozone were identified.
We investigated the relationship between solar activity, total ozone, and solar ultraviolet B (UV-B) radiation from the perspective of multi-fractality. Fractal properties are observed in the time series of the dynamics of complex systems. To detect the changes in fractality, we performed a multifractal analysis using a wavelet transform. The changes in fractality indicated that solar activity was closely related to the total ozone and that the total ozone had a strong effect on UV-B radiation. For high solar activity, the F10.7 flux and global total ozone exhibited monofractality. The F10.7 flux and total ozone also increased, and a change from multifractality to monofractality was observed. This corresponded to the formation of the order. The strong interactions between the solar flux and ozone occur during the high solar activity. In contrast, UV-B radiation increased and showed multifractality, when fluctuations in UV-B radiation became large. For low solar activity, the F10.7 flux and total ozone exhibited multifractality, and UV-B radiation exhibited monofractality. Hence, the change in fractality of the F10.7 flux and total ozone was the opposite of UV-B radiation. A significant change in fractality for F10.7 flux and SSN, which had a significant fluctuation and a slight change in fractality for UV-B radiation, and total ozone were identified.
作者
Fumio Maruyama
Fumio Maruyama(Department of Sports and Health Science, Matsumoto University, Matsumoto, Japan)