期刊文献+

New Solutions for an Elliptic Equation Method and Its Applications in Nonlinear Evolution Equations

New Solutions for an Elliptic Equation Method and Its Applications in Nonlinear Evolution Equations
下载PDF
导出
摘要 In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations. In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.
作者 Minghuan Liu Yuanguang Zheng Minghuan Liu;Yuanguang Zheng(College of Mathematics and Information Science, Nanchang Hangkong University, Nanchang, China)
出处 《Journal of Applied Mathematics and Physics》 2022年第8期2415-2431,共17页 应用数学与应用物理(英文)
关键词 Elliptic Equation Periodic Wave Solution Singular Wave Solution Combined KdV-MKdV Equation Generalized Dullin-Gottwald-Holm Equation Elliptic Equation Periodic Wave Solution Singular Wave Solution Combined KdV-MKdV Equation Generalized Dullin-Gottwald-Holm Equation
  • 相关文献

参考文献1

二级参考文献35

  • 1C. Rogers and W.F. Shadwick, Backlund Transformations, Academic Press, New York (1982).
  • 2R. Hirota, Phys. Rev. Lett. 27 (1971) 1192.
  • 3M.L. Wang, Phys. Lett. A 213 (1996) 279.
  • 4W. Malfiiet, Am. J. Phys. 60 (1992) 650.
  • 5Y.B. Zhou, M.L. Wang, and Y.M. Wang, Phys. Lett. A 308 (2003) 31.
  • 6M.L. Wang and Y.B. Zhou, Phys. Lett. A 318 (2003) 84.
  • 7M.L. Wang, Y.M. Wang, and J.L. Zhang, Chin. Phys. 12 (2003) 1341.
  • 8S.J. Liao, Ph.D. Dissertation (in English), Shanghai Jiao Tong University (1992).
  • 9S.J. Liao, A Kind of Linear Invariance under Homotopy and Some Simple Applications of It in Mechanics, Bericht Nr. 520, Institut Fuer Schifl'bau der Universitaet Hamburg (1992).
  • 10S. Liu, Z. Fu, S. Liu, and Q. Zhao, Phys. Lett. A 289 (2001) 69.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部