摘要
In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obtain the compact finite volume scheme have high order accuracy. We use a compact operator to deal with spatial direction;then we can get the compact finite volume scheme. It is proved that the finite volume scheme is unconditionally stable and convergent in L<sub>∞</sub>-norm. The convergence order is O(τ<sup>2-α</sup> + h<sup>4</sup>). Finally, two numerical examples are given to confirm the theoretical results. Some tables listed also can explain the stability and convergence of the scheme.
In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obtain the compact finite volume scheme have high order accuracy. We use a compact operator to deal with spatial direction;then we can get the compact finite volume scheme. It is proved that the finite volume scheme is unconditionally stable and convergent in L<sub>∞</sub>-norm. The convergence order is O(τ<sup>2-α</sup> + h<sup>4</sup>). Finally, two numerical examples are given to confirm the theoretical results. Some tables listed also can explain the stability and convergence of the scheme.
作者
Baojin Su
Yanan Wang
Jingwen Qi
Yousen Li
Baojin Su;Yanan Wang;Jingwen Qi;Yousen Li(Qihe County Yongfeng Experimental School, Dezhou, China;Middle School Affiliated to Shandong University, Jinan, China)