摘要
Based on the kinetic theory of gases, a simple model for droplet vaporization, in particular mercury, is developed to study the variation of droplet radius as a function of time. This model is in agreement with more sophisticated models for water, such as the kinetic model and the Kulmala model. Findings indicate that complete evaporation of a 1-mm-radius mercury droplet, in a ventilated room at normal temperatures, should take about 1.8 × 10<sup>4</sup> seconds or 5 hours. The findings of this study can be utilized to direct further research in the field of toxin remediation.
Based on the kinetic theory of gases, a simple model for droplet vaporization, in particular mercury, is developed to study the variation of droplet radius as a function of time. This model is in agreement with more sophisticated models for water, such as the kinetic model and the Kulmala model. Findings indicate that complete evaporation of a 1-mm-radius mercury droplet, in a ventilated room at normal temperatures, should take about 1.8 × 10<sup>4</sup> seconds or 5 hours. The findings of this study can be utilized to direct further research in the field of toxin remediation.