期刊文献+

Implications for Antigravity Tests of Dirac’s Negative Energy Antiparticles

Implications for Antigravity Tests of Dirac’s Negative Energy Antiparticles
下载PDF
导出
摘要 P. A. M. Dirac conceived antimatter in 1928 as having negative energy by allowing a consistent representation of matter-antimatter annihilation into light. To achieve compatibility with special relativity, particle physics of the early 20th century made the theoretical assumption that antiparticles have positive energy, an assumption that remains in effect as of today. In this note we prove apparently for the first time a theorem stating that positive mass antiparticles violate Dirac’s particle-antiparticle annihilation into light. We then show the consequential unsettled character of the recent gravity test of the anti-Hydrogen atom due to the positive mass of its nucleus. We conclude by suggesting that a final scientific claim on matter-antimatter gravity requires tests on particles with clear antimatter character, such as the 1994 resolutory proposal for the comparative test of the gravity of very low energy electron and positron in horizontal flight on a supercooled vacuum tube. P. A. M. Dirac conceived antimatter in 1928 as having negative energy by allowing a consistent representation of matter-antimatter annihilation into light. To achieve compatibility with special relativity, particle physics of the early 20th century made the theoretical assumption that antiparticles have positive energy, an assumption that remains in effect as of today. In this note we prove apparently for the first time a theorem stating that positive mass antiparticles violate Dirac’s particle-antiparticle annihilation into light. We then show the consequential unsettled character of the recent gravity test of the anti-Hydrogen atom due to the positive mass of its nucleus. We conclude by suggesting that a final scientific claim on matter-antimatter gravity requires tests on particles with clear antimatter character, such as the 1994 resolutory proposal for the comparative test of the gravity of very low energy electron and positron in horizontal flight on a supercooled vacuum tube.
作者 Ruggero Maria Santilli Ruggero Maria Santilli(Department of Physics, The Institute for Basic Research, 35246 US 19 North, Palm Harbor, 34684, Florida, USA)
机构地区 Department of Physics
出处 《Journal of Applied Mathematics and Physics》 2024年第5期1661-1667,共7页 应用数学与应用物理(英文)
关键词 ANTIPROTONS Anti-Hydrogen Atom ANTIGRAVITY Antiprotons Anti-Hydrogen Atom Antigravity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部