摘要
Analyses of astrophysics and electrostatic separation data were illustrated with the Asymptotic Curve Based and Proportionality Oriented (ACP) nonlinear math for relating two physical variables. The fundamental physical law asserts that the nonlinear change of continuous variable Y is proportional to the nonlinear change in continuous variable X. Mathematically, this is expressed as dα{Y, Yu, Yb} = −Kdβ{X, Xu, Xb}, with Yu, Yb, Xu, and Xb representing the upper and baseline asymptotes of Y and X. Y is the continuous cumulative numbers of the elementary y and X is the continuous cumulative numbers of elementary x. K is the proportionality constant or equally is the rate constant.
Analyses of astrophysics and electrostatic separation data were illustrated with the Asymptotic Curve Based and Proportionality Oriented (ACP) nonlinear math for relating two physical variables. The fundamental physical law asserts that the nonlinear change of continuous variable Y is proportional to the nonlinear change in continuous variable X. Mathematically, this is expressed as dα{Y, Yu, Yb} = −Kdβ{X, Xu, Xb}, with Yu, Yb, Xu, and Xb representing the upper and baseline asymptotes of Y and X. Y is the continuous cumulative numbers of the elementary y and X is the continuous cumulative numbers of elementary x. K is the proportionality constant or equally is the rate constant.
作者
Ralph W. Lai
Melisa W. Lai-Becker
Grace Cheng-Dodge
Michael L. Rehmet
Ralph W. Lai;Melisa W. Lai-Becker;Grace Cheng-Dodge;Michael L. Rehmet(28 Cornerstone Ct., Doylestown, PA, USA;Harvard Medical School, Harvard University, Cambridge, MA, USA;Independent Educational Consultants, West Hartford, CT, USA;Department of Applied Mathematics and Computer Science, Brown University, Providence, RI, USA)