期刊文献+

Dimensionality Reduction of Distributed Vector Word Representations and Emoticon Stemming for Sentiment Analysis 被引量:3

Dimensionality Reduction of Distributed Vector Word Representations and Emoticon Stemming for Sentiment Analysis
下载PDF
导出
摘要 Social media platforms such as Twitter and the Internet Movie Database (IMDb) contain a vast amount of data which have applications in predictive sentiment analysis for movie sales, stock market fluctuations, brand opinion, or current events. Using a dataset taken from IMDb by Stanford, we identify some of the most significant phrases for identifying sentiment in a wide variety of movie reviews. Data from Twitter are especially attractive due to Twitter’s real-time nature through its streaming API. Effectively analyzing this data in a streaming fashion requires efficient models, which may be improved by reducing the dimensionality of input vectors. One way this has been done in the past is by using emoticons;we propose a method for further reducing these features through identifying common structure in emoticons with similar sentiment. We also examine the gender distribution of emoticon usage, finding tendencies towards certain emoticons to be disproportionate between males and females. Despite the roughly equal gender distribution on Twitter, emoticon usage is predominately female. Furthermore, we find that distributed vector representations, such as those produced by Word2Vec, may be reduced through feature selection. This analysis was done on a manually labeled sample of 1000 tweets from a new dataset, the Large Emoticon Corpus, which consisted of about 8.5 million tweets containing emoticons and was collecting over a five day period in May 2015. Additionally, using the common structure of similar emoticons, we are able to characterize positive and negative emoticons using two regular expressions which account for over 90% of emoticon usage in the Large Emoticon Corpus. Social media platforms such as Twitter and the Internet Movie Database (IMDb) contain a vast amount of data which have applications in predictive sentiment analysis for movie sales, stock market fluctuations, brand opinion, or current events. Using a dataset taken from IMDb by Stanford, we identify some of the most significant phrases for identifying sentiment in a wide variety of movie reviews. Data from Twitter are especially attractive due to Twitter’s real-time nature through its streaming API. Effectively analyzing this data in a streaming fashion requires efficient models, which may be improved by reducing the dimensionality of input vectors. One way this has been done in the past is by using emoticons;we propose a method for further reducing these features through identifying common structure in emoticons with similar sentiment. We also examine the gender distribution of emoticon usage, finding tendencies towards certain emoticons to be disproportionate between males and females. Despite the roughly equal gender distribution on Twitter, emoticon usage is predominately female. Furthermore, we find that distributed vector representations, such as those produced by Word2Vec, may be reduced through feature selection. This analysis was done on a manually labeled sample of 1000 tweets from a new dataset, the Large Emoticon Corpus, which consisted of about 8.5 million tweets containing emoticons and was collecting over a five day period in May 2015. Additionally, using the common structure of similar emoticons, we are able to characterize positive and negative emoticons using two regular expressions which account for over 90% of emoticon usage in the Large Emoticon Corpus.
出处 《Journal of Data Analysis and Information Processing》 2015年第4期153-162,共10页 数据分析和信息处理(英文)
关键词 NATURAL LANGUAGE Emoticon TWITTER Review Natural Language Emoticon Twitter Review
  • 相关文献

同被引文献11

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部