期刊文献+

Efficient Image Recognition Technique Using Invariant Moments and Principle Component Analysis

Efficient Image Recognition Technique Using Invariant Moments and Principle Component Analysis
下载PDF
导出
摘要 Image recognition is widely used in different application areas such as shape recognition, gesture recognition and eye recognition. In this research, we introduced image recognition using efficient invariant moments and Principle Component Analysis (PCA) for gray and color images using different number of invariant moments. We used twelve moments for each image of gray images and Hu’s seven moments for color images to decrease dimensionality of the problem to 6 PCA’s for gray and 5 PCA’s for color images and hence the recognition time. PCA is then employed to decrease dimensionality of the problem and hence the recognition time and this is our main objective. The PCA is derived from Karhunen-Loeve’s transformation. Given an N-dimensional vector representation of each image, PCA tends to find a K-dimensional subspace whose basis vectors correspond to the maximum variance direction in the original image space. This new subspace is normally lower dimensional (K N). Three known datasets are used. The first set is the known Flower dataset. The second is the Africans dataset, and the third is the Shapes dataset. All these datasets were used by many researchers. Image recognition is widely used in different application areas such as shape recognition, gesture recognition and eye recognition. In this research, we introduced image recognition using efficient invariant moments and Principle Component Analysis (PCA) for gray and color images using different number of invariant moments. We used twelve moments for each image of gray images and Hu’s seven moments for color images to decrease dimensionality of the problem to 6 PCA’s for gray and 5 PCA’s for color images and hence the recognition time. PCA is then employed to decrease dimensionality of the problem and hence the recognition time and this is our main objective. The PCA is derived from Karhunen-Loeve’s transformation. Given an N-dimensional vector representation of each image, PCA tends to find a K-dimensional subspace whose basis vectors correspond to the maximum variance direction in the original image space. This new subspace is normally lower dimensional (K N). Three known datasets are used. The first set is the known Flower dataset. The second is the Africans dataset, and the third is the Shapes dataset. All these datasets were used by many researchers.
出处 《Journal of Data Analysis and Information Processing》 2017年第1期1-10,共10页 数据分析和信息处理(英文)
关键词 IMAGE PROCESSING INVARIANT MOMENTS Data Analysis IMAGE RECOGNITION PCA Image Processing Invariant Moments Data Analysis Image Recognition PCA
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部