期刊文献+

Evaluating Common Strategies for the Efficiency of Feature Selection in the Context of Microarray Analysis

Evaluating Common Strategies for the Efficiency of Feature Selection in the Context of Microarray Analysis
下载PDF
导出
摘要 The recent explosion of high-throughput technology has been accompanied by a corresponding rapid increase in the number of new statistical methods for developing prognostic and predictive signatures. Three commonly used feature selection techniques for time-to-event data: single gene testing (SGT), Elastic net and the Maximizing R Square Algorithm (MARSA) are evaluated on simulated datasets that vary in the sample size, the number of features and the correlation between features. The results of each method are summarized by reporting the sensitivity and the Area Under the Receiver Operating Characteristic Curve (AUC). The performance of each of these algorithms depends heavily on the sample size while the number of features entered in the analysis has a much more modest impact. The coefficients estimated utilizing SGT are biased towards the null when the genes are uncorrelated and away from the null when the genes are correlated. The Elastic Net algorithms perform better than MARSA and almost as well as the SGT when the features are correlated and about the same as MARSA when the features are uncorrelated. The recent explosion of high-throughput technology has been accompanied by a corresponding rapid increase in the number of new statistical methods for developing prognostic and predictive signatures. Three commonly used feature selection techniques for time-to-event data: single gene testing (SGT), Elastic net and the Maximizing R Square Algorithm (MARSA) are evaluated on simulated datasets that vary in the sample size, the number of features and the correlation between features. The results of each method are summarized by reporting the sensitivity and the Area Under the Receiver Operating Characteristic Curve (AUC). The performance of each of these algorithms depends heavily on the sample size while the number of features entered in the analysis has a much more modest impact. The coefficients estimated utilizing SGT are biased towards the null when the genes are uncorrelated and away from the null when the genes are correlated. The Elastic Net algorithms perform better than MARSA and almost as well as the SGT when the features are correlated and about the same as MARSA when the features are uncorrelated.
出处 《Journal of Data Analysis and Information Processing》 2017年第1期11-32,共22页 数据分析和信息处理(英文)
关键词 ELASTIC Net MARSA LASSO FEATURE Selection Elastic Net MARSA LASSO Feature Selection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部