期刊文献+

High Dimensional Cluster Analysis Using Path Lengths

High Dimensional Cluster Analysis Using Path Lengths
下载PDF
导出
摘要 A hierarchical scheme for clustering data is presented which applies to spaces with a high number of dimensions (). The data set is first reduced to a smaller set of partitions (multi-dimensional bins). Multiple clustering techniques are used, including spectral clustering;however, new techniques are also introduced based on the path length between partitions that are connected to one another. A Line-of-Sight algorithm is also developed for clustering. A test bank of 12 data sets with varying properties is used to expose the strengths and weaknesses of each technique. Finally, a robust clustering technique is discussed based on reaching a consensus among the multiple approaches, overcoming the weaknesses found individually. A hierarchical scheme for clustering data is presented which applies to spaces with a high number of dimensions (). The data set is first reduced to a smaller set of partitions (multi-dimensional bins). Multiple clustering techniques are used, including spectral clustering;however, new techniques are also introduced based on the path length between partitions that are connected to one another. A Line-of-Sight algorithm is also developed for clustering. A test bank of 12 data sets with varying properties is used to expose the strengths and weaknesses of each technique. Finally, a robust clustering technique is discussed based on reaching a consensus among the multiple approaches, overcoming the weaknesses found individually.
出处 《Journal of Data Analysis and Information Processing》 2018年第3期93-125,共33页 数据分析和信息处理(英文)
关键词 CLUSTERING PATH LENGTH CONSENSUS N-Dimensional Line of SIGHT Clustering Path Length Consensus N-Dimensional Line of Sight
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部