期刊文献+

Marshall-Olkin Exponentiated Fréchet Distribution

Marshall-Olkin Exponentiated Fréchet Distribution
下载PDF
导出
摘要 In this paper, a new distribution called Marshall-Olkin Exponentiated Fréchet distribution (MOEFr) is proposed. The goal is to increase the flexibility of the existing Exponentiated Fréchet distribution by including an extra shape parameter, resulting into a more flexible distribution that can provide a better fit to various data sets than the baseline distribution. A generator method introduced by Marshall and Olkin is used to develop the new distribution. Some properties of the new distribution such as hazard rate function, survival function, reversed hazard rate function, cumulative hazard function, odds function, quantile function, moments and order statistics are derived. The maximum likelihood estimation is used to estimate the model parameters. Monte Carlo simulation is used to evaluate the behavior of the estimators through the average bias and root mean squared error. The new distribution is fitted and compared with some existing distributions such as the Exponentiated Fréchet (EFr), Marshall-Olkin Fréchet (MOFr), Beta Exponential Fréchet (BEFr), Beta Fréchet (BFr) and Fréchet (Fr) distributions, on three data sets, namely Bladder cancer, Carbone and Wheaton River data sets. Based on the goodness-of-fit statistics and information criteria values, it is demonstrated that the new distribution provides a better fit for the three data sets than the other distributions considered in the study. In this paper, a new distribution called Marshall-Olkin Exponentiated Fréchet distribution (MOEFr) is proposed. The goal is to increase the flexibility of the existing Exponentiated Fréchet distribution by including an extra shape parameter, resulting into a more flexible distribution that can provide a better fit to various data sets than the baseline distribution. A generator method introduced by Marshall and Olkin is used to develop the new distribution. Some properties of the new distribution such as hazard rate function, survival function, reversed hazard rate function, cumulative hazard function, odds function, quantile function, moments and order statistics are derived. The maximum likelihood estimation is used to estimate the model parameters. Monte Carlo simulation is used to evaluate the behavior of the estimators through the average bias and root mean squared error. The new distribution is fitted and compared with some existing distributions such as the Exponentiated Fréchet (EFr), Marshall-Olkin Fréchet (MOFr), Beta Exponential Fréchet (BEFr), Beta Fréchet (BFr) and Fréchet (Fr) distributions, on three data sets, namely Bladder cancer, Carbone and Wheaton River data sets. Based on the goodness-of-fit statistics and information criteria values, it is demonstrated that the new distribution provides a better fit for the three data sets than the other distributions considered in the study.
作者 Aurise Niyoyunguruza Leo Odiwuor Odongo Euna Nyarige Alexis Habineza Abdisalam Hassan Muse Aurise Niyoyunguruza;Leo Odiwuor Odongo;Euna Nyarige;Alexis Habineza;Abdisalam Hassan Muse(Department of Mathematics, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi, Kenya;Department of Mathematics and Actuarial Science, Kenyatta University (KU), Nairobi, Kenya;Department of Mathematics and Statistics, Machakos University, Machakos, Kenya)
出处 《Journal of Data Analysis and Information Processing》 2023年第3期262-292,共31页 数据分析和信息处理(英文)
关键词 Exponentiated Fréchet Distribution Maximum Likelihood Estimation Marshall-Olkin Family Exponentiated Fréchet Distribution Maximum Likelihood Estimation Marshall-Olkin Family
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部