期刊文献+

A Novel Half-Bridge Power Supply for High Speed Drilling Electrical Discharge Machining

A Novel Half-Bridge Power Supply for High Speed Drilling Electrical Discharge Machining
下载PDF
导出
摘要 High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances. High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.
机构地区 不详
出处 《Journal of Electromagnetic Analysis and Applications》 2009年第2期108-113,共6页 电磁分析与应用期刊(英文)
关键词 High Speed DRILLING Electrical Discharge Machining Half-Bridge Power Supply ZERO Current SWITCHING ZERO Voltage SWITCHING High Speed Drilling Electrical Discharge Machining Half-Bridge Power Supply Zero Current Switching Zero Voltage Switching
  • 相关文献

参考文献2

二级参考文献3

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部