摘要
In this paper, a novel approach is introduced towards an efficient Finite-Difference Time-Domain (FDTD) algorithm by incorporating the Alternating Direction Implicit (ADI) technique to the Nonorthogonal FDTD (NFDTD) method. This scheme can be regarded as an extension of the conventional ADI-FDTD scheme into a generalized curvilinear coordinate system. The improvement on accuracy and the numerical efficiency of the ADI-NFDTD over the conventional nonorthogonal and the ADI-FDTD algorithms is carried out by numerical experiments. The application in the modelling of the Electromagnetic Bandgap (EBG) structure has further demonstrated the advantage of the proposed method.
In this paper, a novel approach is introduced towards an efficient Finite-Difference Time-Domain (FDTD) algorithm by incorporating the Alternating Direction Implicit (ADI) technique to the Nonorthogonal FDTD (NFDTD) method. This scheme can be regarded as an extension of the conventional ADI-FDTD scheme into a generalized curvilinear coordinate system. The improvement on accuracy and the numerical efficiency of the ADI-NFDTD over the conventional nonorthogonal and the ADI-FDTD algorithms is carried out by numerical experiments. The application in the modelling of the Electromagnetic Bandgap (EBG) structure has further demonstrated the advantage of the proposed method.