期刊文献+

Extensions to the Finite Element Technique for the Magneto-Thermal Analysis of Aged Oil Cooled-Insulated Power Transformers

Extensions to the Finite Element Technique for the Magneto-Thermal Analysis of Aged Oil Cooled-Insulated Power Transformers
下载PDF
导出
摘要 It is well known that the hot spot temperature represents the most critical parameter identifying the power rating of a transformer. This paper investigates the effect of the degradation of core magnetic properties on temperature variation of aged oil-cooled transformers. Within this work, 2D accurate assessment of time average flux density distribution in an oil insulated-cooled 25 MVA transformer has been computed using finite-element analysis taking into account ageing and stress-induced non-uniform core permeability values. Knowing the core material specific loss and winding details, local core and winding losses are converted into heat. Based upon the ambient temperature outside the transformer tank and thermal heat transfer related factors, the detailed thermal modeling and analysis have then been carried out to determine temperature distribution everywhere. Analytical details and simulation results demonstrating effects of core magnetic properties degradation on hot spot temperatures of the transformer’s components are given in the paper. It is well known that the hot spot temperature represents the most critical parameter identifying the power rating of a transformer. This paper investigates the effect of the degradation of core magnetic properties on temperature variation of aged oil-cooled transformers. Within this work, 2D accurate assessment of time average flux density distribution in an oil insulated-cooled 25 MVA transformer has been computed using finite-element analysis taking into account ageing and stress-induced non-uniform core permeability values. Knowing the core material specific loss and winding details, local core and winding losses are converted into heat. Based upon the ambient temperature outside the transformer tank and thermal heat transfer related factors, the detailed thermal modeling and analysis have then been carried out to determine temperature distribution everywhere. Analytical details and simulation results demonstrating effects of core magnetic properties degradation on hot spot temperatures of the transformer’s components are given in the paper.
出处 《Journal of Electromagnetic Analysis and Applications》 2012年第4期167-176,共10页 电磁分析与应用期刊(英文)
关键词 OIL Insulated-Cooled Power Transformer FINITE Element Method ELECTROMAGNETIC Field ANALYSIS Thermal ANALYSIS Oil Insulated-Cooled Power Transformer Finite Element Method Electromagnetic Field Analysis Thermal Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部