期刊文献+

Rectangular Microstrip Antenna on Ridge Ground Plane to Control the Resonant Modes for Improved Bandwidth using Transverse Resonance Method

Rectangular Microstrip Antenna on Ridge Ground Plane to Control the Resonant Modes for Improved Bandwidth using Transverse Resonance Method
下载PDF
导出
摘要 A single layer single element rectangular microstrip antenna on ridge ground plane for improved bandwidth is theoretically investigated with a view to develop a concrete physical insight in to the phenomenon. The simple single element probe fed rectangular microstrip antenna fabricated on conventional PTFE (Poly Tetra Fluride Ethelene) substrate have many advantages except its narrow bandwidth. The present study proposes the technique to control the resonant modes of a microstrip antenna for yielding better bandwidth using transverse resonance method. The present antenna is designed to fabricate on ridge ground plane which has been compared with conventional structure and around 6% - 7% improvement in bandwidth is revealed. The detailed variation of radiation pattern across its frequency band has been studied and presented in this paper. The proposed idea has been verified through a commercial software package (High Frequency Structure Simulator) for a patch operating in X band and explained quantitatively. The electric surface current distribution over the patch surface for both the conventional and proposed antenna is presented to explain the broad banding effect physically. A single layer single element rectangular microstrip antenna on ridge ground plane for improved bandwidth is theoretically investigated with a view to develop a concrete physical insight in to the phenomenon. The simple single element probe fed rectangular microstrip antenna fabricated on conventional PTFE (Poly Tetra Fluride Ethelene) substrate have many advantages except its narrow bandwidth. The present study proposes the technique to control the resonant modes of a microstrip antenna for yielding better bandwidth using transverse resonance method. The present antenna is designed to fabricate on ridge ground plane which has been compared with conventional structure and around 6% - 7% improvement in bandwidth is revealed. The detailed variation of radiation pattern across its frequency band has been studied and presented in this paper. The proposed idea has been verified through a commercial software package (High Frequency Structure Simulator) for a patch operating in X band and explained quantitatively. The electric surface current distribution over the patch surface for both the conventional and proposed antenna is presented to explain the broad banding effect physically.
机构地区 Department of ECE
出处 《Journal of Electromagnetic Analysis and Applications》 2012年第5期206-211,共6页 电磁分析与应用期刊(英文)
关键词 BROAD BANDWIDTH RIDGE Ground PLANE Rectangular MICROSTRIP PATCH Broad Bandwidth Ridge Ground Plane Rectangular Microstrip Patch
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部