摘要
Based on the active coupled line concept, a novel approach for efficient signal and noise modeling of millimeter-wave field-effect transistors is proposed. The distributed model considers the effect of wave propagation along the device electrodes, which can significantly affect the device performance especially in the millimetre-wave range. By solving the multi-conductor transmission line equations using the Finite-Difference Time-Domain technique, the proposed procedure can accurately determine the signal and noise performance of the transistor. In order to demonstrate the proposed FET model accuracy, a distributed low-noise amplifier was designed and tested. A model selection is often a trade-off between procedure complexity and response accuracy. Using the proposed distributed model versus the circuit-based model will allow increasing the model frequency range.
Based on the active coupled line concept, a novel approach for efficient signal and noise modeling of millimeter-wave field-effect transistors is proposed. The distributed model considers the effect of wave propagation along the device electrodes, which can significantly affect the device performance especially in the millimetre-wave range. By solving the multi-conductor transmission line equations using the Finite-Difference Time-Domain technique, the proposed procedure can accurately determine the signal and noise performance of the transistor. In order to demonstrate the proposed FET model accuracy, a distributed low-noise amplifier was designed and tested. A model selection is often a trade-off between procedure complexity and response accuracy. Using the proposed distributed model versus the circuit-based model will allow increasing the model frequency range.