期刊文献+

Finite Element Assisted Numerical Comparison of Single and Two Phase Inductively Coupled Power Transfer Systems

Finite Element Assisted Numerical Comparison of Single and Two Phase Inductively Coupled Power Transfer Systems
下载PDF
导出
摘要 Inductively coupled power transfer systems (ICPT) are becoming ubiquitous in industry. Many such systems are excited with single or multi-phase input current. This leads to increased complexity in comparing such systems when solely using the magnetic frequency analysis. This paper utilizes modern finite element method analysis software to propose a novel software methodology for the numerical comparison of single and two phase ICPT systems as demonstrated on a three dimensional (3D) battery charging system. The sinusoidal magnetic frequency response of a single phase system is compared to the magnetic transient response of a multi-phase current system by use of a novel software methodology proposed in this paper. This consists of a transient response analysis to determine compute the resulting magnetic response over the duration of an input current period on the two phase system. The resulting non-sinusoidal response is then integrated over a whole period to extract the root-mean-square value for comparison with that of a single phase system across a 3D cubic power zone. Inductively coupled power transfer systems (ICPT) are becoming ubiquitous in industry. Many such systems are excited with single or multi-phase input current. This leads to increased complexity in comparing such systems when solely using the magnetic frequency analysis. This paper utilizes modern finite element method analysis software to propose a novel software methodology for the numerical comparison of single and two phase ICPT systems as demonstrated on a three dimensional (3D) battery charging system. The sinusoidal magnetic frequency response of a single phase system is compared to the magnetic transient response of a multi-phase current system by use of a novel software methodology proposed in this paper. This consists of a transient response analysis to determine compute the resulting magnetic response over the duration of an input current period on the two phase system. The resulting non-sinusoidal response is then integrated over a whole period to extract the root-mean-square value for comparison with that of a single phase system across a 3D cubic power zone.
出处 《Journal of Electromagnetic Analysis and Applications》 2013年第7期312-315,共4页 电磁分析与应用期刊(英文)
关键词 FINITE ELEMENT Method ELECTROMAGNETICS MAGNETICS INDUCTION Wireless-Power-Transfer Finite Element Method Electromagnetics Magnetics Induction Wireless-Power-Transfer
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部