摘要
The nonlinear waves of terahertz (THz) range are investigated in the paraelectric crystals SrTiO<sub>3</sub> at the temperatures ~77 K. The frequency dispersion is important there. In the absence of a bias electric field the dominating nonlinearity is cubic. The frequency dispersion and nonlinearity correspond to existence of envelope solitons and the modulation instability (MI) of long input pulses, whereas in the transverse direction MI is absent. There exists a possibility to generate the regular sequences of short THz pulses due to MI in bounded SrTiO<sub>3</sub> crystals. The focusing of input long pulses reduces the threshold of MI, increases the output amplitudes of the short pulses, and provides more stable generation of the short pulses. It is investigated the frequency multiplication of THz electromagnetic radiation in bounded paraelectric SrTiO<sub>3</sub> when a bias electric field is applied. The dominating nonlinearity is quadratic there. The frequency dispersion and the transverse width of the input wave beams affect the generation of higher harmonics. It is possible to select the certain numbers of higher harmonics by means of the optimum length of the crystal, by the width of the beam of the input first harmonic, and by the focusing of the input first harmonic.
The nonlinear waves of terahertz (THz) range are investigated in the paraelectric crystals SrTiO<sub>3</sub> at the temperatures ~77 K. The frequency dispersion is important there. In the absence of a bias electric field the dominating nonlinearity is cubic. The frequency dispersion and nonlinearity correspond to existence of envelope solitons and the modulation instability (MI) of long input pulses, whereas in the transverse direction MI is absent. There exists a possibility to generate the regular sequences of short THz pulses due to MI in bounded SrTiO<sub>3</sub> crystals. The focusing of input long pulses reduces the threshold of MI, increases the output amplitudes of the short pulses, and provides more stable generation of the short pulses. It is investigated the frequency multiplication of THz electromagnetic radiation in bounded paraelectric SrTiO<sub>3</sub> when a bias electric field is applied. The dominating nonlinearity is quadratic there. The frequency dispersion and the transverse width of the input wave beams affect the generation of higher harmonics. It is possible to select the certain numbers of higher harmonics by means of the optimum length of the crystal, by the width of the beam of the input first harmonic, and by the focusing of the input first harmonic.