期刊文献+

Ultra-Wideband Log Periodic Dipole Antenna (LPDA) for Wireless Communication Applications

Ultra-Wideband Log Periodic Dipole Antenna (LPDA) for Wireless Communication Applications
下载PDF
导出
摘要 This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to improve the antenna impedance matching. The proposed antenna dimensions are 50 × 50 mm2 with FR4 substrate thickness 0.8 mm. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The pulse distortion is verified by the measured the proposed antenna performance with virtually steady group delay. The simulation and experimental results show that the proposed antenna exhibits good impedance matching, stable radiation patterns throughout the whole operating frequency bands, acceptable gain and stable group delay over the entire operating band. An UWB extended from 1.85 GHz to 11 GHz is obtained, and the average antenna gain is about 5.5 dBi over the operating band with peak gain around 6.5 dBi and 70% average radiation efficiency. This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to improve the antenna impedance matching. The proposed antenna dimensions are 50 × 50 mm2 with FR4 substrate thickness 0.8 mm. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The pulse distortion is verified by the measured the proposed antenna performance with virtually steady group delay. The simulation and experimental results show that the proposed antenna exhibits good impedance matching, stable radiation patterns throughout the whole operating frequency bands, acceptable gain and stable group delay over the entire operating band. An UWB extended from 1.85 GHz to 11 GHz is obtained, and the average antenna gain is about 5.5 dBi over the operating band with peak gain around 6.5 dBi and 70% average radiation efficiency.
机构地区 Microstrip Department
出处 《Journal of Electromagnetic Analysis and Applications》 2018年第6期119-129,共11页 电磁分析与应用期刊(英文)
关键词 High Frequency Structure Simulation (HFSS) Dipole Antenna Log Periodic COPLANAR Waveguide (CPW) Ultra Wideband (UWB) RADIATION Pattern RADIATION Efficiency Group Delay High Frequency Structure Simulation (HFSS) Dipole Antenna Log Periodic Coplanar Waveguide (CPW) Ultra Wideband (UWB) Radiation Pattern Radiation Efficiency Group Delay
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部