期刊文献+

Investigation of a Counter Flow Microchannel Heat Exchanger Performance with Using Nanofluid as a Coolant 被引量:1

Investigation of a Counter Flow Microchannel Heat Exchanger Performance with Using Nanofluid as a Coolant
下载PDF
导出
摘要 In this paper the performance of a counter flow microchannel heat exchanger (CFMCHE) is numerically investigated with a nanofluid as a cooling medium. Two types of nanofluids are used Cu-water and Al2O3-water. From the results obtained it’s found that thermal performance of CFMCHE increased with using the nanofluids as cooling medium with no extra increase in pressure drop due to the ultra fine solid particles and low volume fraction concentrations. The na-nofluids (Cu-water and Al2O3-water) volume fractions were in the range 1% to 5%. It’s also found that nanoflu-id-cooled CFMCHE could absorb more heat than water-cooled CFMCHE when the flow rate was low. For high flow rates the heat transfer was dominated by the volume flow rate and nanoparticles did not contribute to the extra heat absorption. Also the performance of CFMCHE can be increased considerably by using nanofluids with higher thermal conductivities. In this paper the performance of a counter flow microchannel heat exchanger (CFMCHE) is numerically investigated with a nanofluid as a cooling medium. Two types of nanofluids are used Cu-water and Al2O3-water. From the results obtained it’s found that thermal performance of CFMCHE increased with using the nanofluids as cooling medium with no extra increase in pressure drop due to the ultra fine solid particles and low volume fraction concentrations. The na-nofluids (Cu-water and Al2O3-water) volume fractions were in the range 1% to 5%. It’s also found that nanoflu-id-cooled CFMCHE could absorb more heat than water-cooled CFMCHE when the flow rate was low. For high flow rates the heat transfer was dominated by the volume flow rate and nanoparticles did not contribute to the extra heat absorption. Also the performance of CFMCHE can be increased considerably by using nanofluids with higher thermal conductivities.
出处 《Journal of Electronics Cooling and Thermal Control》 2012年第3期35-43,共9页 电子器件冷却与温度控制期刊(英文)
关键词 Nanofluids MICROCHANNEL Heat EXCHANGER EFFECTIVENESS LAMINAR Flow Numerical Simulation Nanofluids Microchannel Heat Exchanger Effectiveness Laminar Flow Numerical Simulation
  • 相关文献

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部