期刊文献+

Visualization and Measurement of Water Distribution in Through-Plane Direction of Polymer Electrolyte Fuel Cell during Start-Up by Using Neutron Radiography

Visualization and Measurement of Water Distribution in Through-Plane Direction of Polymer Electrolyte Fuel Cell during Start-Up by Using Neutron Radiography
下载PDF
导出
摘要 Water management in a polymer electrolyte fuel cell (PEFC) is a key topic for PEFC operation. A microporous layer (MPL) has been recently used to improve the water flooding in the gas diffusion layer (GDL) around the catalyst layer. However, the mechanisms of this MPL are not completely understood because of the difficulty of measuring the water distribution during operation. To clarify the water-accumulation phenomena with the MPL, visualization and measurement of the water distribution in the through-plane direction of a small fuel cell is carried out by using neutron radiography. The parallelism of the neutron flux is optimized by using a collimator to observe the transient change in the water distributions, and two-dimensional water distributions in the through-plane direction of the PEFC can be obtained every 60 s. The differences in the water accumulation processes in the GDL without and with the MPL under the lands and channels are compared. It is observed that the water accumulation in the GDL under the land is greater than that under the channel during the period of early PEFC operation. Water evacuation from the GDL to the channel mainly occurs around the land corners. Furthermore, one-dimensional water distributions are calculated from the visualized water distributions, and the results without and with the MPL in the cathode are compared. The water thickness in the through-plane direction attains its maximum value around the boundary between the catalyst layer and the GDL without the MPL, whereas it is attained between the MPL and the GDL with the MPL. The maximum water accumulation in the GDL under the land without the MPL is higher than that with the MPL. Water management in a polymer electrolyte fuel cell (PEFC) is a key topic for PEFC operation. A microporous layer (MPL) has been recently used to improve the water flooding in the gas diffusion layer (GDL) around the catalyst layer. However, the mechanisms of this MPL are not completely understood because of the difficulty of measuring the water distribution during operation. To clarify the water-accumulation phenomena with the MPL, visualization and measurement of the water distribution in the through-plane direction of a small fuel cell is carried out by using neutron radiography. The parallelism of the neutron flux is optimized by using a collimator to observe the transient change in the water distributions, and two-dimensional water distributions in the through-plane direction of the PEFC can be obtained every 60 s. The differences in the water accumulation processes in the GDL without and with the MPL under the lands and channels are compared. It is observed that the water accumulation in the GDL under the land is greater than that under the channel during the period of early PEFC operation. Water evacuation from the GDL to the channel mainly occurs around the land corners. Furthermore, one-dimensional water distributions are calculated from the visualized water distributions, and the results without and with the MPL in the cathode are compared. The water thickness in the through-plane direction attains its maximum value around the boundary between the catalyst layer and the GDL without the MPL, whereas it is attained between the MPL and the GDL with the MPL. The maximum water accumulation in the GDL under the land without the MPL is higher than that with the MPL.
出处 《Journal of Flow Control, Measurement & Visualization》 2015年第3期122-133,共12页 流量控制、测量及可视化(英文)
关键词 PEFC MICROPOROUS Layer Water Distribution NEUTRON RADIOGRAPHY PEFC Microporous Layer Water Distribution Neutron Radiography
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部