期刊文献+

Universality of Periodic Oscillation Induced in Side Branch of a T-Junction in Numerical Simulation 被引量:1

Universality of Periodic Oscillation Induced in Side Branch of a T-Junction in Numerical Simulation
下载PDF
导出
摘要 The flow instability through the side branch of a T-junction is analyzed in a numerical simulation. In a previous experimental study, the authors clarified the mechanism of fluid-induced vibration in the side branch of the T-junction in laminar steady flow through the trunk. However, in that approach there were restrictions with respect to extracting details of flow behavior such as the flow instability and the distribution of wall shear stress along the wall. Here the spatial growth of the velocity perturbation at the upstream boundary of the side branch is investigated. The simulation result indicates that a periodic velocity fluctuation introduced at the upstream boundary is amplified downstream, in good agreement with experimental result. The fluctuation in wall shear stress because of the flow instability shows local extrema in both the near and distal walls. From the numerical simulation, the downstream fluid oscillation under a typical condition has a Strouhal number of 1.05, which approximately agrees with the value obtained in experiments. Therefore, this periodic oscillation motion is a universal phenomenon in the side branch of a T-junction. The flow instability through the side branch of a T-junction is analyzed in a numerical simulation. In a previous experimental study, the authors clarified the mechanism of fluid-induced vibration in the side branch of the T-junction in laminar steady flow through the trunk. However, in that approach there were restrictions with respect to extracting details of flow behavior such as the flow instability and the distribution of wall shear stress along the wall. Here the spatial growth of the velocity perturbation at the upstream boundary of the side branch is investigated. The simulation result indicates that a periodic velocity fluctuation introduced at the upstream boundary is amplified downstream, in good agreement with experimental result. The fluctuation in wall shear stress because of the flow instability shows local extrema in both the near and distal walls. From the numerical simulation, the downstream fluid oscillation under a typical condition has a Strouhal number of 1.05, which approximately agrees with the value obtained in experiments. Therefore, this periodic oscillation motion is a universal phenomenon in the side branch of a T-junction.
出处 《Journal of Flow Control, Measurement & Visualization》 2017年第4期73-85,共13页 流量控制、测量及可视化(英文)
关键词 Flow INSTABILITY Fluid-Induced OSCILLATION NUMERICAL Simulation SIMPLER Method T-JUNCTION Flow Instability Fluid-Induced Oscillation Numerical Simulation SIMPLER Method T-Junction
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部