期刊文献+

Estimation of CO<sub>2</sub>Storage Capacity in the Real Sub-Seabed Sediments by Gas Hydrate

Estimation of CO<sub>2</sub>Storage Capacity in the Real Sub-Seabed Sediments by Gas Hydrate
下载PDF
导出
摘要 Beyond conventional methods for CO2 capture and storage, a promising technology of sub-seabed CO2 storage in the form of gas hydrate has come into the limelight nowadays. In order to estimate CO2 storage capacity in the real sub-seabed sediments by gas hydrate, a large-scale geological model with the radius of 100 m and the thickness of 160 m was built in this study, and the processes of CO2 injection and CO2 hydrate formation in the sediments with two-phase flow were simulated numerically at three different injection rates of 10 ton/day, 50 ton/day, and 100 ton/day for an injection period of 150 days. Then, the evolutions of CO2 reaction, free CO2, and hydrate formation over time were analyzed quantitatively, and the spatial distributions of the physical properties in the sediments were presented to investigate the behaviors of CO2 hydrate formation in the sediments with two-phase flow. For CO2 storage capacity, a total amount of 15,000-ton CO2 can be stored safely in the sediments at the injection rate of 100 ton/day for 150 days, and a maximum amount of 36,500-ton CO2 could be stored in the sub-seabed sediments per year for a CO2 storage reservoir with the thickness of 100 m. For the practical scenario, an average value of 1 ton/day/m could be used to determine the actual injection rate based on the thickness of the real sub-seabed sediments. Beyond conventional methods for CO2 capture and storage, a promising technology of sub-seabed CO2 storage in the form of gas hydrate has come into the limelight nowadays. In order to estimate CO2 storage capacity in the real sub-seabed sediments by gas hydrate, a large-scale geological model with the radius of 100 m and the thickness of 160 m was built in this study, and the processes of CO2 injection and CO2 hydrate formation in the sediments with two-phase flow were simulated numerically at three different injection rates of 10 ton/day, 50 ton/day, and 100 ton/day for an injection period of 150 days. Then, the evolutions of CO2 reaction, free CO2, and hydrate formation over time were analyzed quantitatively, and the spatial distributions of the physical properties in the sediments were presented to investigate the behaviors of CO2 hydrate formation in the sediments with two-phase flow. For CO2 storage capacity, a total amount of 15,000-ton CO2 can be stored safely in the sediments at the injection rate of 100 ton/day for 150 days, and a maximum amount of 36,500-ton CO2 could be stored in the sub-seabed sediments per year for a CO2 storage reservoir with the thickness of 100 m. For the practical scenario, an average value of 1 ton/day/m could be used to determine the actual injection rate based on the thickness of the real sub-seabed sediments.
出处 《Journal of Flow Control, Measurement & Visualization》 2018年第2期82-94,共13页 流量控制、测量及可视化(英文)
关键词 CO2 Capture and STORAGE Sub-Seabed CO2 STORAGE CO2 Hydrate Formation Two-Phase Flow Sub-Seabed Sediments CO2 STORAGE Capacity CO2 Capture and Storage Sub-Seabed CO2 Storage CO2 Hydrate Formation Two-Phase Flow Sub-Seabed Sediments CO2 Storage Capacity
  • 相关文献

参考文献1

二级参考文献12

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部