期刊文献+

Electron Shape and Structure: A New Vortex Theory 被引量:3

Electron Shape and Structure: A New Vortex Theory
下载PDF
导出
摘要 Along with all other quantum objects, an electron is partly a wave and partly a particle. The corpuscular properties of a particle are demonstrated when it is shown to have a localized position in space along its trajectory at any given moment. When an electron looks more like a particle it has no shape, “point particle”, according to the Standard Model, meaning that it interacts as if it is entirely located at a single point in space and does not spread out to fill a three-dimensional volume. Therefore, in the sense of particle-like interactions, an electron has no shape. In this paper, a new theory is proposed in which the electron has a structure and a shape. The central idea is that an electron is a frictionless vortex with conserved momentum made out of condensed vacuum generated in the Big Bang from massless virtual photons that acquire mass when moving in the vortex at the speed of light. Using Hydrodynamics laws and applying them on the superfluid vacuum the basic properties of the electron are described here forth. This study provides mathematical models to calculate the mass, kinetic energy, density, volume, time, charge, and particle-wave duality. Such mathematical formulations are presented to confirm the theory. We conclude that the shape of the electron is accessible to human imagination, knowing its shape helps to determine its properties and shed a light on how matter is made and to explain the interactions of sub-atomic particles. Along with all other quantum objects, an electron is partly a wave and partly a particle. The corpuscular properties of a particle are demonstrated when it is shown to have a localized position in space along its trajectory at any given moment. When an electron looks more like a particle it has no shape, “point particle”, according to the Standard Model, meaning that it interacts as if it is entirely located at a single point in space and does not spread out to fill a three-dimensional volume. Therefore, in the sense of particle-like interactions, an electron has no shape. In this paper, a new theory is proposed in which the electron has a structure and a shape. The central idea is that an electron is a frictionless vortex with conserved momentum made out of condensed vacuum generated in the Big Bang from massless virtual photons that acquire mass when moving in the vortex at the speed of light. Using Hydrodynamics laws and applying them on the superfluid vacuum the basic properties of the electron are described here forth. This study provides mathematical models to calculate the mass, kinetic energy, density, volume, time, charge, and particle-wave duality. Such mathematical formulations are presented to confirm the theory. We conclude that the shape of the electron is accessible to human imagination, knowing its shape helps to determine its properties and shed a light on how matter is made and to explain the interactions of sub-atomic particles.
作者 Nader Butto Nader Butto(Petah Tikva, Israel)
机构地区 Petah Tikva
出处 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第3期340-352,共13页 高能物理(英文)
关键词 Electron Structure VORTEX Hydrodynamics Laws Vacuum Density Electron Structure Vortex Hydrodynamics Laws Vacuum Density
  • 相关文献

同被引文献7

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部