期刊文献+

New Mechanism and Analytical Formula for Understanding the Gravity Constant <i>G</i>

New Mechanism and Analytical Formula for Understanding the Gravity Constant <i>G</i>
下载PDF
导出
摘要 The nature of gravitation and <em>G</em> is not well understood. A new gravitation mechanism is proposed that explains the origin and essence of the gravitational constant, <em>G</em>. Based on general relativity, the vacuum is considered to be a superfluid with measurable density. Rotating bodies drag vacuum and create a vortex with gradient pressure. The drag force of vacuum fluid flow in the arm of the vortex is calculated relative to the static vacuum and a value that is numerically equal to that of <em>G</em> is obtained. Using Archimedes’ principle, it is determined that <em>G</em> is the volume of vacuum displaced by a force equivalent to its weight which is equal to the drag force of the vacuum. It is concluded that the gravitational constant <em>G</em> expresses the force needed to displace a cubic metre of vacuum that weighs one kg in one second. Therefore, <em>G</em> is not a fundamental physical constant but rather is an expression of the resistance encountered by the gravitational force in the vacuum. The nature of gravitation and <em>G</em> is not well understood. A new gravitation mechanism is proposed that explains the origin and essence of the gravitational constant, <em>G</em>. Based on general relativity, the vacuum is considered to be a superfluid with measurable density. Rotating bodies drag vacuum and create a vortex with gradient pressure. The drag force of vacuum fluid flow in the arm of the vortex is calculated relative to the static vacuum and a value that is numerically equal to that of <em>G</em> is obtained. Using Archimedes’ principle, it is determined that <em>G</em> is the volume of vacuum displaced by a force equivalent to its weight which is equal to the drag force of the vacuum. It is concluded that the gravitational constant <em>G</em> expresses the force needed to displace a cubic metre of vacuum that weighs one kg in one second. Therefore, <em>G</em> is not a fundamental physical constant but rather is an expression of the resistance encountered by the gravitational force in the vacuum.
作者 Nader Butto Nader Butto(Rabin Medical Centre, Petah-Tikva, Israel)
机构地区 Rabin Medical Centre
出处 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第3期357-367,共11页 高能物理(英文)
关键词 Gravitational Constant Vacuum Density Drag Force Vortex Formation Specific Volume Flow Archimedes’ Principle Gravitational Constant Vacuum Density Drag Force Vortex Formation Specific Volume Flow Archimedes’ Principle
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部