期刊文献+

Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions

Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
下载PDF
导出
摘要 We study the dependence of the of microstates number (for free fermions-bosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes <em>V</em>. A minimum <em>V</em> = <em>V</em><sub>min</sub> for that purpose is determined. Fermions can not exist for <em style="white-space:normal;">V</em><span style="white-space:normal;"> < </span><em style="white-space:normal;">V</em><sub style="white-space:normal;">min</sub>. This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates. We study the dependence of the of microstates number (for free fermions-bosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes <em>V</em>. A minimum <em>V</em> = <em>V</em><sub>min</sub> for that purpose is determined. Fermions can not exist for <em style="white-space:normal;">V</em><span style="white-space:normal;"> < </span><em style="white-space:normal;">V</em><sub style="white-space:normal;">min</sub>. This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates.
作者 Angelo Plastino Mario Carlos Rocca Gustavo Ferri Angelo Plastino;Mario Carlos Rocca;Gustavo Ferri(Departamento de Física, Universidad Nacional de La Plata, La Plata, Argentina;Consejo Nacional de Investigaciones Científicas y Tecnológicas (IFLP-CCT-CONICET)-C. C. 727, La Plata, Argentina;SThAR-EPFL, Lausanne, Switzerland;Departamento de Matemática, Universidad Nacional de La Plata, La Plata, Argentina;Fac. de C. Exactas-National University La Pampa, Peru y Uruguay, Santa Rosa, La Pampa, Argentina)
出处 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第3期443-449,共7页 高能物理(英文)
关键词 Microstates’s Number Ω FERMIONS BOSONS Microstates’s Number Ω Fermions Bosons
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部