期刊文献+

A Solution to the Cosmological Constant Problem in Two Time Dimensions

A Solution to the Cosmological Constant Problem in Two Time Dimensions
下载PDF
导出
摘要 For the last hundred years, the existence and the value of the cosmological constant Λ has been a great enigma. So far, any theoretical model has failed to predict the value of Λ by several orders of magnitude. We here offer a solution to the cosmological constant problem by extending the Einstein-Friedmann equations by one additional time dimension. Solving these equations, we find that the Universe is flat on a global scale and that the cosmological constant lies between 10<sup>-90</sup> m<sup>-2</sup> and 10<sup>-51</sup> m<sup>-2</sup> which is in range observed by experiments. It also proposes a mean to explain the Planck length and to mitigate the singularity at the Big Bang. For the last hundred years, the existence and the value of the cosmological constant Λ has been a great enigma. So far, any theoretical model has failed to predict the value of Λ by several orders of magnitude. We here offer a solution to the cosmological constant problem by extending the Einstein-Friedmann equations by one additional time dimension. Solving these equations, we find that the Universe is flat on a global scale and that the cosmological constant lies between 10<sup>-90</sup> m<sup>-2</sup> and 10<sup>-51</sup> m<sup>-2</sup> which is in range observed by experiments. It also proposes a mean to explain the Planck length and to mitigate the singularity at the Big Bang.
作者 Christoph Köhn Christoph Köhn(Technical University of Denmark, National Space Institute (DTU Space), Kgs Lyngby, Denmark)
出处 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第4期640-655,共16页 高能物理(英文)
关键词 Two Time Dimensions Planck Length Cosmological Constant Problem Curvature of the Universe Two Time Dimensions Planck Length Cosmological Constant Problem Curvature of the Universe
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部