期刊文献+

We Begin with a “Trivial” Condition on Massive Gravitons, and Use That to Examine Nonsingular Starts to Inflation, for GW, with GW Strength and Possible Polarization States? 被引量:1

We Begin with a “Trivial” Condition on Massive Gravitons, and Use That to Examine Nonsingular Starts to Inflation, for GW, with GW Strength and Possible Polarization States?
下载PDF
导出
摘要 Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationship between a small time step, t, the minimum scale factor and even the tension or property values of the initial space-time wall, and that is a consequence of a “trivial” solution taking into account “massive” gravitons. <i>I.e.</i> this solution has a mass term times the partial derivative with respect to time of an expression in brackets. The expression in brackets is the cube of a scale factor minus the square of the scale factor. Bonus that this equation is set to zero. It is deemed trivial due to the insistence of having a singular solution. If that is dropped, we have a different venue. In addition, the Friedman equation for nonsingular cosmology can have a quadratic dependence upon a density (of space-time), leading to a way to incorporate right at the surface of the initial “space-time” bubble an uncertainty principle. From there we suggest a first principle Schrodinger equation, with the caveat that time does not exist, within the space-time nonsingular bubble, but is formed right afterwards. From there we again form solutions for strength of GW signals and suggestions as to polarization states. Our quest is motivated by our last articles question, where “We conclude by stating the following question. Can extra dimensions come from a Multiverse feed into Pre-Planckian space-time? See Theorem at the end of this publication. Our answer is in the affirmative, and it has intellectual similarities to George Chapline’s work with Black hole physics”. From there we next will in future articles postulate conditions for experimental detectors for subsequent data sets to obtain falsifiable data sets. Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationship between a small time step, t, the minimum scale factor and even the tension or property values of the initial space-time wall, and that is a consequence of a “trivial” solution taking into account “massive” gravitons. <i>I.e.</i> this solution has a mass term times the partial derivative with respect to time of an expression in brackets. The expression in brackets is the cube of a scale factor minus the square of the scale factor. Bonus that this equation is set to zero. It is deemed trivial due to the insistence of having a singular solution. If that is dropped, we have a different venue. In addition, the Friedman equation for nonsingular cosmology can have a quadratic dependence upon a density (of space-time), leading to a way to incorporate right at the surface of the initial “space-time” bubble an uncertainty principle. From there we suggest a first principle Schrodinger equation, with the caveat that time does not exist, within the space-time nonsingular bubble, but is formed right afterwards. From there we again form solutions for strength of GW signals and suggestions as to polarization states. Our quest is motivated by our last articles question, where “We conclude by stating the following question. Can extra dimensions come from a Multiverse feed into Pre-Planckian space-time? See Theorem at the end of this publication. Our answer is in the affirmative, and it has intellectual similarities to George Chapline’s work with Black hole physics”. From there we next will in future articles postulate conditions for experimental detectors for subsequent data sets to obtain falsifiable data sets.
作者 Andrew Walcott Beckwith Andrew Walcott Beckwith(Physics Department, College of Physics, Chongqing University, Chongqing, China)
机构地区 Physics Department
出处 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第4期692-709,共18页 高能物理(英文)
关键词 Minimum Scale Factor Cosmological Constant Space-Time Bubble Penrose Singularity Minimum Scale Factor Cosmological Constant Space-Time Bubble Penrose Singularity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部