Big Bang Nucleosynthesis in Carmeli Cosmology—Mass Density, Temperature and Expansion Rate of the Early Universe
Big Bang Nucleosynthesis in Carmeli Cosmology—Mass Density, Temperature and Expansion Rate of the Early Universe
摘要
The Carmeli Cosmological Special Relativity theory (CSR) is used to study the universe at early times after the big bang. The universe temperature vs. time relation is developed from the mass density relation. It is shown that CSR is well suited to analyze the nucleosynthesis of the light elements up to beryllium, equivalent to the standard model.
The Carmeli Cosmological Special Relativity theory (CSR) is used to study the universe at early times after the big bang. The universe temperature vs. time relation is developed from the mass density relation. It is shown that CSR is well suited to analyze the nucleosynthesis of the light elements up to beryllium, equivalent to the standard model.
作者
Firmin J. Oliveira
Firmin J. Oliveira(East Asian Observatory/James Clerk Maxwell Telescope, Hilo, USA)
参考文献1
-
1K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.BIG-BANG COSMOLOGY[J].Chinese Physics C,2014,38(9):327-338. 被引量:1
二级参考文献100
-
1V.M. Slipher, Pop. Astr. 23, 21 (1915).
-
2K. Lundmark, MNRAS 84, 747 (1924).
-
3E. Hubble and M.L. Humason, Astrophys. J. 74,43 (1931).
-
4G. Gamow, Phys. Rev. 70, 572 (1946).
-
5R.A. Alpher et al., Phys. Rev. 73, 803 (1948).
-
6R.A. Alpher and R.C. Herman, Phys. Rev. 74, 1737 (1948).
-
7R.A. Alpher and R.C. Herman, Phys. Rev. 75, 1089 (1949).
-
8A.A. Penzias and R.W. Wilson, Astrophys. J. 142, 419 (1965).
-
9P.J.E. Peebles, Principles of Physical Cosmology, Princeton University Press (1993).
-
10G. Borner, The Early Universe: Facts and Fiction, Springer-Verlag (1988).
-
1Xun-Liang Hua,He-Guo Li,Bi-En Tan.COFs-based Porous Materials for Photocatalytic Applications[J].Chinese Journal of Polymer Science,2020,38(7):673-684. 被引量:6
-
2J. C. Botke.The Lithium Problem—The Excess Isn’t Missing;It Was Never There[J].Journal of High Energy Physics, Gravitation and Cosmology,2021,7(1):320-323.
-
3MA Tianli,GUO Bing,SHEN Yangping,LI Zhihong,YAN Shengquan,SU Jun,WANG Youbao,LI Yunju,LIAN Gang,ZENG Sheng,HAN Zhiyu,LI Xinyue,SU Yi,LIU Weiping.Study of Crucial Nuclear Reaction in Nucleosynthesis of Elements[J].Annual Report of China Institute of Atomic Energy,2019(1):103-104.
-
4Tobias Bartusch.The Electromagnetic Particle—A Backward Engineering Approach to Matter in SI Units[J].Journal of High Energy Physics, Gravitation and Cosmology,2020,6(4):774-801.
-
5Stanisław Olszewski.Two Problems of Time Entering Respectively the Relativistic Mechanics and Electron Transport in Quantum Theory[J].World Journal of Mechanics,2020,10(10):186-197.
-
6Darnell E.Kelly,Damian J.Christian,Mihalis Mathioudakis,Darko Jevremovi′c.Can active late-type stars contribute to the Galactic lithium abundance?[J].Research in Astronomy and Astrophysics,2020,20(7):127-133.
-
7Andrew Walcott Beckwith.Does the Penrose Suggestion as to Black Holes from a Prior Universe Showing Up in Today’s Universe Have Credibility? Examined from a Singular, and Nonsingular Beginning of Cosmological Expansion[J].Journal of High Energy Physics, Gravitation and Cosmology,2021,7(1):149-171.
-
8Shu Liu,Ming-Lei Tong.Gravitational wave sensitivity curve of pulsar timing arrays affected by correlated noises[J].Research in Astronomy and Astrophysics,2020,20(11):293-302.
-
9Xu Xing,HIRFL-CSR Mass Measurement Collaboration.Persistency of N=32 Subshell in Scandium Isotopes Established through Isochronous Mass Measurement for ^(52-54)Sc[J].IMP & HIRFL Annual Report,2018(1):50-50.
-
10Jose L. Parra.Photonic Gravitational Interactions from a Quantum Point of View[J].Optics and Photonics Journal,2021,11(1):12-21. 被引量:2