期刊文献+

Gravitational Waves in a Universe with Time-Varying Curvature

Gravitational Waves in a Universe with Time-Varying Curvature
下载PDF
导出
摘要 In this paper, we present a complete solution of Einstein’s equations for the gravitational wave (GW) problem. The full metric is taken in the usual way to be the sum of a background vacuum metric plus a perturbation metric describing the GW. The background metric used is characterized by time-varying curvature as described in a recent paper. The solution we develop here does exhibit some features found in the standard model but it also contains others that are not found in the standard model. One difference is that the solution with time-varying curvature only allows for outward-directed waves. While this might seem a minor point regarding the GW equations, it is actually a significant verification of the solution presented in our earlier paper. A more obvious difference is that the solution demands that the vacuum along with all matter must experience transverse motion with the passing of the waves. This fact leads to the idea that a new approach to the detection problem based on the Doppler effect could well be practical. Such an approach, if feasible, would be much simpler and less costly to implement than the large-scale interferometer system currently under development. In this paper, we present a complete solution of Einstein’s equations for the gravitational wave (GW) problem. The full metric is taken in the usual way to be the sum of a background vacuum metric plus a perturbation metric describing the GW. The background metric used is characterized by time-varying curvature as described in a recent paper. The solution we develop here does exhibit some features found in the standard model but it also contains others that are not found in the standard model. One difference is that the solution with time-varying curvature only allows for outward-directed waves. While this might seem a minor point regarding the GW equations, it is actually a significant verification of the solution presented in our earlier paper. A more obvious difference is that the solution demands that the vacuum along with all matter must experience transverse motion with the passing of the waves. This fact leads to the idea that a new approach to the detection problem based on the Doppler effect could well be practical. Such an approach, if feasible, would be much simpler and less costly to implement than the large-scale interferometer system currently under development.
作者 J. C. Botke J. C. Botke(Nogales, Arizona, USA)
机构地区 Nogales
出处 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第2期607-631,共25页 高能物理(英文)
关键词 Gravitational Waves Time-Varying Curvature Gravitational Waves Time-Varying Curvature
  • 相关文献

参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部