摘要
We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as of yet no consensus as to how, say GW or other signals from a wormhole mouth could be quantized or made to be in adherence to a procedure Weber cribbed from Feynman, in 1961. In addition, we utilize an approximation for the Hubble parameter parameterized from Temperature using Sarkar’s H ~ Temperature relations, as given in the text. Finally, after doing this, we go to the Energy as E also ~ Temperature, and from there use E (energy) as ~ signal frequency. This gives us an idea of how to estimate frequency generated at the mouth of a wormhole.
We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as of yet no consensus as to how, say GW or other signals from a wormhole mouth could be quantized or made to be in adherence to a procedure Weber cribbed from Feynman, in 1961. In addition, we utilize an approximation for the Hubble parameter parameterized from Temperature using Sarkar’s H ~ Temperature relations, as given in the text. Finally, after doing this, we go to the Energy as E also ~ Temperature, and from there use E (energy) as ~ signal frequency. This gives us an idea of how to estimate frequency generated at the mouth of a wormhole.
作者
Andrew Beckwith
Andrew Beckwith(Physics Department, College of Physics, Chongqing University, Chongqing, China)