期刊文献+

Null Geodesics, Raychaudhuri Equation, Trapped Surfaces, and Penrose Singularity Theorem

Null Geodesics, Raychaudhuri Equation, Trapped Surfaces, and Penrose Singularity Theorem
下载PDF
导出
摘要 We review the concept of congruence of null geodesics, the Raychaudhuri equation for the expansion, its harmonic oscillator version and associated “quantum” propagator, the role of the equation in the derivation of the Penrose singularity theorem, the definition of trapped surfaces, and the derivation of the theorem itself. We review the concept of congruence of null geodesics, the Raychaudhuri equation for the expansion, its harmonic oscillator version and associated “quantum” propagator, the role of the equation in the derivation of the Penrose singularity theorem, the definition of trapped surfaces, and the derivation of the theorem itself.
作者 Miguel Socolovsky Miguel Socolovsky(Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de México, México)
出处 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2022年第3期536-557,共22页 高能物理(英文)
关键词 Null Geodesics Trapped Surfaces Singularity Theorem Null Geodesics Trapped Surfaces Singularity Theorem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部