期刊文献+

Relativistic Supernova Blast Waves Exhibit Properties of Gravitational Lenses and the Hubble Constant

Relativistic Supernova Blast Waves Exhibit Properties of Gravitational Lenses and the Hubble Constant
下载PDF
导出
摘要 Simulations based on Supernova (SN) observations predict several galactic SN explosions (SNe) can occur every century. Unlike SNes within the Interstellar Medium (ISM) where ambient gas generally absorbs blast waves within a million years, SNes occurring in a rarified environment outside of the ISM generate blast waves which remain in a relativistic free expansion phase for more extended periods. The SN blast wave forms an expanding spherical shell and when multiple blast waves intersect, the overlapping region naturally takes the form of a ring, an arc, or an Einstein Cross structure. The analysis shows the relativistic plasma establishes a medium with permeability which drives the index of refraction greater than 1. As a result, when a shock discontinuity forms in the overlapping region, light is reflected from the host galaxy which exposes the intersecting blast wave regions. The expanding shells are shown to induce an achromatic redshift to the reflected light consistent with those measured for gravitational lenses. Further, it is shown that a Hubble equation for a blast wave around the Milky Way Galaxy can be parameterized to approximate measured redshifts over a wide range of distances. Simulations based on Supernova (SN) observations predict several galactic SN explosions (SNe) can occur every century. Unlike SNes within the Interstellar Medium (ISM) where ambient gas generally absorbs blast waves within a million years, SNes occurring in a rarified environment outside of the ISM generate blast waves which remain in a relativistic free expansion phase for more extended periods. The SN blast wave forms an expanding spherical shell and when multiple blast waves intersect, the overlapping region naturally takes the form of a ring, an arc, or an Einstein Cross structure. The analysis shows the relativistic plasma establishes a medium with permeability which drives the index of refraction greater than 1. As a result, when a shock discontinuity forms in the overlapping region, light is reflected from the host galaxy which exposes the intersecting blast wave regions. The expanding shells are shown to induce an achromatic redshift to the reflected light consistent with those measured for gravitational lenses. Further, it is shown that a Hubble equation for a blast wave around the Milky Way Galaxy can be parameterized to approximate measured redshifts over a wide range of distances.
作者 Paul Marko Paul Marko(Electromagnetic Design Group, Deerfield Beach, USA)
出处 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第4期1237-1258,共22页 高能物理(英文)
关键词 SUPERNOVA PLASMA Gravitational Lens Einstein Cross Hubble Constant Supernova Plasma Gravitational Lens Einstein Cross Hubble Constant
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部