期刊文献+

Exact Analytical and Numerical Solutions to the Time-Dependent Schrödinger Equation for a One-Dimensional Potential Exhibiting Non-Exponential Decay at All Times

Exact Analytical and Numerical Solutions to the Time-Dependent Schrödinger Equation for a One-Dimensional Potential Exhibiting Non-Exponential Decay at All Times
下载PDF
导出
摘要 The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically demonstrated. Then, exact, analytical solutions to the time-dependent Schr?dinger equation in one dimension are developed for a time-independent potential consisting of an infinite wall and a repulsive delta function. The exact solutions are obtained by means of a superposition of time-independent solutions spanning the given Hilbert space with appropriately chosen spectral functions for which the resulting integrals can be evaluated exactly. Square-integrability and the boundary conditions are satisfied. The simplest of the obtained solutions is presented and the probability for the particle to be found inside the potential well as a function of time is calculated. The system exhibits non-exponential decay for all times;the probability decreases at large times as . Other exact solutions found exhibit power law behavior at large times. The results are generalized to all normalizable solutions to this problem. Additionally, numerical solutions are obtained using the staggered leap-frog algorithm for select potentials exhibiting the prevalence of non-exponential decay at short times. The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically demonstrated. Then, exact, analytical solutions to the time-dependent Schr?dinger equation in one dimension are developed for a time-independent potential consisting of an infinite wall and a repulsive delta function. The exact solutions are obtained by means of a superposition of time-independent solutions spanning the given Hilbert space with appropriately chosen spectral functions for which the resulting integrals can be evaluated exactly. Square-integrability and the boundary conditions are satisfied. The simplest of the obtained solutions is presented and the probability for the particle to be found inside the potential well as a function of time is calculated. The system exhibits non-exponential decay for all times;the probability decreases at large times as . Other exact solutions found exhibit power law behavior at large times. The results are generalized to all normalizable solutions to this problem. Additionally, numerical solutions are obtained using the staggered leap-frog algorithm for select potentials exhibiting the prevalence of non-exponential decay at short times.
机构地区 不详
出处 《Journal of Modern Physics》 2010年第2期124-136,共13页 现代物理(英文)
关键词 Non-Exponential DECAY EXACT Solutions Non-Exponential Decay Exact Solutions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部