摘要
The electron gas examined in a very thin potential tube exhibits some special kind of the excited pairs making them similar to the Cooper pairs. The coupling energy of the pair can be calculated as an amount of energy required to transform the excitation energy of a coupled pair into the one-electron excitation energy. For an extremely thin potential tube the coupling energy of the pair tends to infinity. The gas energy is unstable with respect to the pair excitation which provides a kind of gap near the Fermi level. A decisive part of the gap energy is due to the electron-electron interaction. The gap is attained on condition the length of a thin potential box exceeds some critical value. In the next step, a coherence length in the gas is obtained. This length, combined with a critical magnetic field representing a transition from a superconducting to a normal state, allows us to calculate the penetration depth of the magnetic field for the singlet and triplet excitations. The penetration depth together with the critical magnetic field and energy gap can provide us with a critical current, as well as critical temperature for the superconducting state.
The electron gas examined in a very thin potential tube exhibits some special kind of the excited pairs making them similar to the Cooper pairs. The coupling energy of the pair can be calculated as an amount of energy required to transform the excitation energy of a coupled pair into the one-electron excitation energy. For an extremely thin potential tube the coupling energy of the pair tends to infinity. The gas energy is unstable with respect to the pair excitation which provides a kind of gap near the Fermi level. A decisive part of the gap energy is due to the electron-electron interaction. The gap is attained on condition the length of a thin potential box exceeds some critical value. In the next step, a coherence length in the gas is obtained. This length, combined with a critical magnetic field representing a transition from a superconducting to a normal state, allows us to calculate the penetration depth of the magnetic field for the singlet and triplet excitations. The penetration depth together with the critical magnetic field and energy gap can provide us with a critical current, as well as critical temperature for the superconducting state.