期刊文献+

Maximally Entangled States in the Hydrogen Molecule: The Role of Spin and Correlation 被引量:1

Maximally Entangled States in the Hydrogen Molecule: The Role of Spin and Correlation
下载PDF
导出
摘要 Many electron calculations on a simplest realistic two electron system i.e. H2molecule was applied and as the consequence correlation effects was reflected accurately in the wavefunctions of H2. Zanardi’s entanglement measurement, demonstrated that the maximum of entanglement for the ground state happens when U =J and this resolved the controversial conclusion of U = 0 for maximum entanglement. It was shown that the ground and third excited states are maximally entangled. These maximally entangled states and also the minimally entangled states are correlated to their spin’s property. The wavefunctions of the not magnetic (S = 0) ground and excited states explicitly depend on correlation parameters whereas the first excited states which is magnetic (S2 = 2 and Sz≠0) is not entangled. The second excited state is not magnetic but its wavefunction does not depend on correlation parameters therefore it is a moderately entangled state. In any case, by switching on a magnetic field an entangled state with Sz = 0 can be extracted from a not entangled degenerate magnetic state. We suggest that in a realistic molecular scale system, there is two criteria for finding maximally entangled electronic states, first the system should be in moderately correlated regime and second the system should have a non-magnetic (Sz = 0) electronic state. Many electron calculations on a simplest realistic two electron system i.e. H2molecule was applied and as the consequence correlation effects was reflected accurately in the wavefunctions of H2. Zanardi’s entanglement measurement, demonstrated that the maximum of entanglement for the ground state happens when U =J and this resolved the controversial conclusion of U = 0 for maximum entanglement. It was shown that the ground and third excited states are maximally entangled. These maximally entangled states and also the minimally entangled states are correlated to their spin’s property. The wavefunctions of the not magnetic (S = 0) ground and excited states explicitly depend on correlation parameters whereas the first excited states which is magnetic (S2 = 2 and Sz≠0) is not entangled. The second excited state is not magnetic but its wavefunction does not depend on correlation parameters therefore it is a moderately entangled state. In any case, by switching on a magnetic field an entangled state with Sz = 0 can be extracted from a not entangled degenerate magnetic state. We suggest that in a realistic molecular scale system, there is two criteria for finding maximally entangled electronic states, first the system should be in moderately correlated regime and second the system should have a non-magnetic (Sz = 0) electronic state.
机构地区 不详
出处 《Journal of Modern Physics》 2011年第7期664-668,共5页 现代物理(英文)
关键词 HUBBARD Model ENTANGLEMENT HYDROGEN MOLECULE Hubbard Model Entanglement Hydrogen Molecule
  • 相关文献

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部