期刊文献+

Holographic Principle and Large Scale Structure in the Universe

Holographic Principle and Large Scale Structure in the Universe
下载PDF
导出
摘要 A reasonable representation of large scale structure, in a closed universe so large it’s nearly flat, can be developed by extending the holographic principle and assuming the bits of information describing the distribution of matter density in the universe remain in thermal equilibrium with the cosmic microwave background radiation. The analysis identifies three levels of self-similar large scale structure, corresponding to superclusters, galaxies, and star clusters, between today’s observable universe and stellar systems. The self-similarity arises because, according to the virial theorem, the average gravitational potential energy per unit volume in each structural level is the same and depends only on the gravitational constant. The analysis indicates stellar systems first formed at z ≈ 62, consistent with the findings of Naoz et al., and self-similar large scale structures began to appear at redshift z ≈ 4. It outlines general features of development of self-similar large scale structures at redshift z < 4. The analysis is consistent with observations for angular momentum of large scale structures as a function of mass, and average speed of substructures within large scale structures. The analysis also indicates relaxation times for star clusters are generally less than the age of the universe and relaxation times for more massive structures are greater than the age of the universe. A reasonable representation of large scale structure, in a closed universe so large it’s nearly flat, can be developed by extending the holographic principle and assuming the bits of information describing the distribution of matter density in the universe remain in thermal equilibrium with the cosmic microwave background radiation. The analysis identifies three levels of self-similar large scale structure, corresponding to superclusters, galaxies, and star clusters, between today’s observable universe and stellar systems. The self-similarity arises because, according to the virial theorem, the average gravitational potential energy per unit volume in each structural level is the same and depends only on the gravitational constant. The analysis indicates stellar systems first formed at z ≈ 62, consistent with the findings of Naoz et al., and self-similar large scale structures began to appear at redshift z ≈ 4. It outlines general features of development of self-similar large scale structures at redshift z < 4. The analysis is consistent with observations for angular momentum of large scale structures as a function of mass, and average speed of substructures within large scale structures. The analysis also indicates relaxation times for star clusters are generally less than the age of the universe and relaxation times for more massive structures are greater than the age of the universe.
作者 T. R. Mongan
机构地区 不详
出处 《Journal of Modern Physics》 2011年第12期1544-1549,共6页 现代物理(英文)
关键词 HOLOGRAPHIC PRINCIPLE LARGE SCALE Structure SELF-SIMILARITY Holographic Principle Large Scale Structure Self-Similarity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部