摘要
The influence of electron radiation on the properties of semiconducting silicon single crystals (Si)—both n- and p-types (currently one of the most widely applied material in the electronic technology) was studied under the electron irradiation process in-situ in air (in common conditions). Higher value of electro-conductivity (σ) during the irradiation process with respect to after irradiation was observed, which was explained by ionization and capture mechanisms resulting in the formation of non-equilibrium carriers (hole-electron pairs). The kinetics of radiation defects generation, their physical nature, temperature stability and relaxation are examined. Structural radiation defects formation: point and complexes, their influence on the silicon conductivity are considered.
The influence of electron radiation on the properties of semiconducting silicon single crystals (Si)—both n- and p-types (currently one of the most widely applied material in the electronic technology) was studied under the electron irradiation process in-situ in air (in common conditions). Higher value of electro-conductivity (σ) during the irradiation process with respect to after irradiation was observed, which was explained by ionization and capture mechanisms resulting in the formation of non-equilibrium carriers (hole-electron pairs). The kinetics of radiation defects generation, their physical nature, temperature stability and relaxation are examined. Structural radiation defects formation: point and complexes, their influence on the silicon conductivity are considered.