期刊文献+

Photoluminescence Compounds ZnGa<sub>2</sub>Se<sub>4</sub>and ZnGa<sub>2</sub>Se<sub>4</sub>: Eu<sup>2+</sup>

Photoluminescence Compounds ZnGa<sub>2</sub>Se<sub>4</sub>and ZnGa<sub>2</sub>Se<sub>4</sub>: Eu<sup>2+</sup>
下载PDF
导出
摘要 Photoluminescence (PL) spectra measurements have been carried out in the ternary chalcopyrite semiconductor compounds ZnGa2Se42Se4: Eu2+ using single-wavelength excitation of a Hg lamp with λ = 365 and 375 nm. Measurements were performed at the temperature range of (120 ~ 220 K) and (110 ~ 230 K) for ZnGa2Se4 and ZnGa2Se4:Eu2+, respectively. No PL was observed for both crystals at the temperatures higher than 220 K (ZnGa2Se4) and 230 K (ZnGa2Se4:Eu2+). At temperatures lower than ~220 K and ~230 K one and three lines were observed for ZnGa2Se4 and ZnGa2Se4: Eu at 591 nm and 566, 591, 646 nm, respectively. 566 nm line was assigned as due of the 4f65d→ 4f7 (8S7/2) transition of Eu2+ ions, whereas the rest two lines were attributed to the donor-acceptor recombination pairs. Probability of non-radiation transfers (A = 108 ~109 s-1), energy of optical phonons (hω= 25 ~ 30 meV), Huan Rice parameter (S = 8 ~ 10), energy of thermal quenching (△E = 0.02 ~ 0.06 eV) were determined from the tem-perature dependences of the full width at half maximum (FWHM = Г(T)). Photoluminescence (PL) spectra measurements have been carried out in the ternary chalcopyrite semiconductor compounds ZnGa2Se42Se4: Eu2+ using single-wavelength excitation of a Hg lamp with λ = 365 and 375 nm. Measurements were performed at the temperature range of (120 ~ 220 K) and (110 ~ 230 K) for ZnGa2Se4 and ZnGa2Se4:Eu2+, respectively. No PL was observed for both crystals at the temperatures higher than 220 K (ZnGa2Se4) and 230 K (ZnGa2Se4:Eu2+). At temperatures lower than ~220 K and ~230 K one and three lines were observed for ZnGa2Se4 and ZnGa2Se4: Eu at 591 nm and 566, 591, 646 nm, respectively. 566 nm line was assigned as due of the 4f65d→ 4f7 (8S7/2) transition of Eu2+ ions, whereas the rest two lines were attributed to the donor-acceptor recombination pairs. Probability of non-radiation transfers (A = 108 ~109 s-1), energy of optical phonons (hω= 25 ~ 30 meV), Huan Rice parameter (S = 8 ~ 10), energy of thermal quenching (△E = 0.02 ~ 0.06 eV) were determined from the tem-perature dependences of the full width at half maximum (FWHM = Г(T)).
出处 《Journal of Modern Physics》 2012年第8期827-830,共4页 现代物理(英文)
关键词 Ternary CHALCOPYRITE PHOTOLUMINESCENCE RARE-EARTH Elements Ternary Chalcopyrite Photoluminescence Rare-Earth Elements
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部