期刊文献+

Effect of Sn Doping on the Properties of ZnO Thin Films Prepared by Spray Pyrolysis

Effect of Sn Doping on the Properties of ZnO Thin Films Prepared by Spray Pyrolysis
下载PDF
导出
摘要 Layers of transparent and conductive Sn-doped zinc oxide (ZnO) have been prepared using chemical reactive liquid phase (spray) method on glass substrates. X-ray diffraction analysis shows that the obtained layers show preferential grains orientation along the direction (002). Microstructural analysis indicates that the thickness of the deposited films is independent of Sn content, i.e. 408 nm, and that the average grain size increases with increasing Sn content, ranging from 31 nm to 42 nm. The value of the optical gap obtained using UV-visible transmission spectroscopy method increases slightly from 3.1 eV to 3.3 eV. Moreover, transmission curves reveal that the prepared thin films are transparent in the visible domain. Layers of transparent and conductive Sn-doped zinc oxide (ZnO) have been prepared using chemical reactive liquid phase (spray) method on glass substrates. X-ray diffraction analysis shows that the obtained layers show preferential grains orientation along the direction (002). Microstructural analysis indicates that the thickness of the deposited films is independent of Sn content, i.e. 408 nm, and that the average grain size increases with increasing Sn content, ranging from 31 nm to 42 nm. The value of the optical gap obtained using UV-visible transmission spectroscopy method increases slightly from 3.1 eV to 3.3 eV. Moreover, transmission curves reveal that the prepared thin films are transparent in the visible domain.
出处 《Journal of Modern Physics》 2012年第11期1781-1785,共5页 现代物理(英文)
关键词 ZnO THIN Films ULTRASONIC SPRAY SEMICONDUCTOR DOPING Optical GAP ZnO Thin Films Ultrasonic Spray Semiconductor doping Optical Gap
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部