期刊文献+

QCD as High Energy Limit of the Scalar Strong Interaction Hadron Theory

QCD as High Energy Limit of the Scalar Strong Interaction Hadron Theory
下载PDF
导出
摘要 This paper is an extension of the book of reference [1] below. QCD Lagrangian is derived from the same equations of motion for quarks used to construct the equations of motion for mesons and baryons in the scalar strong interaction hadron theory that accounts for many basic low energy data not covered by QCD. At high energies, the energetic quarks in a hadron can be far from each other and approximately free. Each quark is associated with a vector in an internal space characterizing its mass and charge. These spaces are interchangeable and provide a new symmetry equivalent to color symmetry in QCD. A quark in a meson has two “colors” and in a baryon three “colors”;the β function of QCD is 61%-92% greater in high energy interactions leading to baryons than that to mesons. This function enters the measurable running coupling constant and this prediction is testable against experiment. QCD, successful at high energies, is thus reconciled with the scalar strong interaction hadron theory and both complement each other. This paper is an extension of the book of reference [1] below. QCD Lagrangian is derived from the same equations of motion for quarks used to construct the equations of motion for mesons and baryons in the scalar strong interaction hadron theory that accounts for many basic low energy data not covered by QCD. At high energies, the energetic quarks in a hadron can be far from each other and approximately free. Each quark is associated with a vector in an internal space characterizing its mass and charge. These spaces are interchangeable and provide a new symmetry equivalent to color symmetry in QCD. A quark in a meson has two “colors” and in a baryon three “colors”;the β function of QCD is 61%-92% greater in high energy interactions leading to baryons than that to mesons. This function enters the measurable running coupling constant and this prediction is testable against experiment. QCD, successful at high energies, is thus reconciled with the scalar strong interaction hadron theory and both complement each other.
作者 F. C. Hoh
机构地区 Dragarbrunnsg
出处 《Journal of Modern Physics》 2013年第9期1171-1175,共5页 现代物理(英文)
关键词 QCD at High ENERGIES SCALAR Strong Interaction Internal SYMMETRY QCD at High Energies Scalar Strong Interaction Internal Symmetry
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部