摘要
A new updated simple local optical potential is proposed for analyzing low-energy π--12C elastic scattering data at 80 MeV and below. This potential is composed of two real terms and an imaginary term. The nature of the real part of the potential is repulsive at smaller radii and attractive at larger ones. In fact, the height of the repulsive term is found to change linearly with the incident pion kinetic energy. On the other hand, the imaginary part of the potential is attractive, shallow and non-monotonic with a dip at about 1.6 fm. Such a nature of the potential makes it feasible to predict π--12C cross sections at other energies in the energy region considered herein. Coulomb effects are incorporated by following Stricker’s prescription. This study will serve positively in studying both pionic atoms and the role of negative pions in radiotherapy.
A new updated simple local optical potential is proposed for analyzing low-energy π--12C elastic scattering data at 80 MeV and below. This potential is composed of two real terms and an imaginary term. The nature of the real part of the potential is repulsive at smaller radii and attractive at larger ones. In fact, the height of the repulsive term is found to change linearly with the incident pion kinetic energy. On the other hand, the imaginary part of the potential is attractive, shallow and non-monotonic with a dip at about 1.6 fm. Such a nature of the potential makes it feasible to predict π--12C cross sections at other energies in the energy region considered herein. Coulomb effects are incorporated by following Stricker’s prescription. This study will serve positively in studying both pionic atoms and the role of negative pions in radiotherapy.