期刊文献+

Quantum Effects from a Simple Card Game

Quantum Effects from a Simple Card Game
下载PDF
导出
摘要 A well-known, classical conundrum, which is related to conditional probability, has heretofore only been used for games and puzzles. It is shown here, both empirically and formally, that the counterintuitive phenomenon in question has consequences that are far more profound, especially for physics. A simple card game the reader can play at home demonstrates the counterintuitive phenomenon, and shows how it gives rise to hidden variables. These variables are “hidden” in the sense that they belong to the past and no longer exist. A formal proof shows that the results are due to the duration of what can be thought of as a gambler’s bet, without loss of generalization. The bet is over when it is won or lost, analogous to the collapse of a wave function. In the meantime, new and empowering information does not change the original probabilities. A related thought experiment involving a pregnant woman demonstrates that macroscopic systems do not always have states that are completely intrinsic. Rather, the state of a macroscopic system may depend upon how the experiment is set up and how the system is measured even though no wave functions are involved. This obviously mitigates the chasm between the quantum mechanical and the classical. A well-known, classical conundrum, which is related to conditional probability, has heretofore only been used for games and puzzles. It is shown here, both empirically and formally, that the counterintuitive phenomenon in question has consequences that are far more profound, especially for physics. A simple card game the reader can play at home demonstrates the counterintuitive phenomenon, and shows how it gives rise to hidden variables. These variables are “hidden” in the sense that they belong to the past and no longer exist. A formal proof shows that the results are due to the duration of what can be thought of as a gambler’s bet, without loss of generalization. The bet is over when it is won or lost, analogous to the collapse of a wave function. In the meantime, new and empowering information does not change the original probabilities. A related thought experiment involving a pregnant woman demonstrates that macroscopic systems do not always have states that are completely intrinsic. Rather, the state of a macroscopic system may depend upon how the experiment is set up and how the system is measured even though no wave functions are involved. This obviously mitigates the chasm between the quantum mechanical and the classical.
机构地区 Physics Division
出处 《Journal of Modern Physics》 2014年第18期1999-2002,共4页 现代物理(英文)
关键词 Quantum MECHANICS Hidden VARIABLES Three PRISONERS PROBLEM Bertrand’s Box PARADOX Monty HALL PROBLEM Quantum Mechanics Hidden Variables Three Prisoners Problem Bertrand’s Box Paradox Monty Hall Problem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部