期刊文献+

The Basic Cause of Superconductivity

The Basic Cause of Superconductivity
下载PDF
导出
摘要 This paper posits an extra force field, “super force field”, as the short-distance additional force field to ordinary force fields (gravitational, weak, electromagnetic, and strong) at absolute zero or extremely high density. The short distance super force field accounts for quantum phase transition at absolute zero, and provides the basic cause of superconductivity above absolute zero by quantum fluctuation. At absolute zero or extremely high density, to prevent inactivation or singularity, respectively, the short-distance super force field emerges in between the core particle and the ordinary force field, resulting in the super ordinary force field. In the super ordinary force field, the short-distance super force field excludes the long-distance ordinary force field. At absolute zero, the super ordinary force field emerges to account for quantum phase transition at absolute zero. Through quantum fluctuation, the super ordinary force appears above absolute zero as in superconductivity. Through quantum fluctuation, superconducting electric current is “super current” as one giant quantum state with the super force field that does not interact with ordinary forces, resulting in zero resistance. This paper posits an extra force field, “super force field”, as the short-distance additional force field to ordinary force fields (gravitational, weak, electromagnetic, and strong) at absolute zero or extremely high density. The short distance super force field accounts for quantum phase transition at absolute zero, and provides the basic cause of superconductivity above absolute zero by quantum fluctuation. At absolute zero or extremely high density, to prevent inactivation or singularity, respectively, the short-distance super force field emerges in between the core particle and the ordinary force field, resulting in the super ordinary force field. In the super ordinary force field, the short-distance super force field excludes the long-distance ordinary force field. At absolute zero, the super ordinary force field emerges to account for quantum phase transition at absolute zero. Through quantum fluctuation, the super ordinary force appears above absolute zero as in superconductivity. Through quantum fluctuation, superconducting electric current is “super current” as one giant quantum state with the super force field that does not interact with ordinary forces, resulting in zero resistance.
作者 Ding-Yu Chung
机构地区 P.O. Box
出处 《Journal of Modern Physics》 2015年第1期26-36,共11页 现代物理(英文)
关键词 SUPERCONDUCTIVITY Digital Space QUANTUM Mechanics Uncertainty Principle Super Force Field QUANTUM Phase Transition QUANTUM FLUCTUATION SUPERCONDUCTOR COOPER PAIRS Superconductivity Digital Space Quantum Mechanics Uncertainty Principle Super Force Field Quantum Phase Transition Quantum Fluctuation Superconductor Cooper Pairs
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部