期刊文献+

Velocity Addition Demonstrated from the Conservation of Linear Momenta, an Alternative Expression

Velocity Addition Demonstrated from the Conservation of Linear Momenta, an Alternative Expression
下载PDF
导出
摘要 Is it possible to demonstrate the velocity addition without using a variable time (as it is done in theory of relativity)? The topic of this paper is to propose and demonstrate an alternative expres-sion based on the conservation of linear momenta. The method proposed here is to start from a physical object (and not from a mathematical point), i.e. from an object with a mass. And the hy-pothesis is inertial mass to be different from gravitational mass. Then, when impulses are added, we get an expression of the velocity addition itself. When numerical predictions are compared with experimental results, the differences are lower than the measures uncertainty. And these numerical results are much close to those predicts by the theory of relativity, nevertheless with a little difference at high velocities. If this demonstration and this expression were validated, it would allow giving an alternative explanation to some experiments and nature observations as Doppler Effect on light celerity. But first, it would be necessary to get from laboratories more precise experimental results, in order to validate or not this hypothesis of the sum of linear momenta with a Variable Inertial Mass. Is it possible to demonstrate the velocity addition without using a variable time (as it is done in theory of relativity)? The topic of this paper is to propose and demonstrate an alternative expres-sion based on the conservation of linear momenta. The method proposed here is to start from a physical object (and not from a mathematical point), i.e. from an object with a mass. And the hy-pothesis is inertial mass to be different from gravitational mass. Then, when impulses are added, we get an expression of the velocity addition itself. When numerical predictions are compared with experimental results, the differences are lower than the measures uncertainty. And these numerical results are much close to those predicts by the theory of relativity, nevertheless with a little difference at high velocities. If this demonstration and this expression were validated, it would allow giving an alternative explanation to some experiments and nature observations as Doppler Effect on light celerity. But first, it would be necessary to get from laboratories more precise experimental results, in order to validate or not this hypothesis of the sum of linear momenta with a Variable Inertial Mass.
机构地区 ESIM Engineer
出处 《Journal of Modern Physics》 2015年第6期719-728,共10页 现代物理(英文)
关键词 VELOCITY ADDITION VARIABLE Time VARIABLE Inertial Mass RELATIVITY Light Celerity Impulse LINEAR Momentum Kinetic Energy Fizeau’s Experiment Velocity Addition Variable Time Variable Inertial Mass Relativity Light Celerity Impulse Linear Momentum Kinetic Energy Fizeau’s Experiment
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部