摘要
Agreed with the Lorentz transformations, a multidimensional treatment of motion of elementary particles with the fundamental speed (upper limit of the speed of light) in six-dimensional Euclidean space in Compton neighborhood of observed three-dimensional space is given. Thereby it is supposed that the proper time of any elementary particle is proportional to the path traversed by it in the extra space. By the available experimental data [1], these suppositions are allowed to find the photon proper energy, 1.44 × 10-5 eV. It is shown that the difference between the fundamental speed and speed of high-energy photons, in the projection on the three-dimensional space, is negligibly small.
Agreed with the Lorentz transformations, a multidimensional treatment of motion of elementary particles with the fundamental speed (upper limit of the speed of light) in six-dimensional Euclidean space in Compton neighborhood of observed three-dimensional space is given. Thereby it is supposed that the proper time of any elementary particle is proportional to the path traversed by it in the extra space. By the available experimental data [1], these suppositions are allowed to find the photon proper energy, 1.44 × 10-5 eV. It is shown that the difference between the fundamental speed and speed of high-energy photons, in the projection on the three-dimensional space, is negligibly small.