摘要
A causal-directed graphical space-time model has been suggested in which the recurrence phenomena that happen in history and science can be naturally explained. In this Ramsey theorem inspired model, the regular and repeated patterns are interpreted as identical or semi-identical space-time causal chains. The “same colored paths and subgraphs” in the classical Ramsey theorem are interpreted as identical or semi-identical causal chains. In the framework of the model, Poincare recurrence and the cosmological recurrence arise naturally. We use Ramsey theorem to prove that there’s always a possibility of predictability no matter how chaotic the system is.
A causal-directed graphical space-time model has been suggested in which the recurrence phenomena that happen in history and science can be naturally explained. In this Ramsey theorem inspired model, the regular and repeated patterns are interpreted as identical or semi-identical space-time causal chains. The “same colored paths and subgraphs” in the classical Ramsey theorem are interpreted as identical or semi-identical causal chains. In the framework of the model, Poincare recurrence and the cosmological recurrence arise naturally. We use Ramsey theorem to prove that there’s always a possibility of predictability no matter how chaotic the system is.