期刊文献+

Non-Perturbative Analysis of Various Mass Generation by Gluonic Dressing Effect with the Schwinger-Dyson Formalism in QCD

Non-Perturbative Analysis of Various Mass Generation by Gluonic Dressing Effect with the Schwinger-Dyson Formalism in QCD
下载PDF
导出
摘要 As a topic of “quantum color dynamics”, we study various mass generation of colored particles and gluonic dressing effect in a non-perturbative manner, using the Schwinger-Dyson (SD) formalism in (scalar) QCD. First, we review dynamical quark-mass generation in QCD in the SD approach as a typical fermion-mass generation via spontaneous chiral-symmetry breaking. Second, using the SD formalism for scalar QCD, we investigate the scalar diquark, a bound-state-like object of two quarks, and its mass generation, which is clearly non-chiral-origin. Here, the scalar diquark is treated as an extended colored scalar field, like a meson in effective hadron models, and its effective size R is introduced as a form factor. As a diagrammatical difference, the SD equation for the scalar diquark has an additional 4-point interaction term, in comparison with the single quark case. The diquark size R is taken to be smaller than a hadron, R ~ 1 fm, and larger than a constituent quark, R ~ 0.3 fm. We find that the compact diquark with R ~ 0.3 fm has a large effective mass of about 900 MeV, and therefore such a compact diquark is not acceptable in effective models for hadrons. We also consider the artificial removal of 3- and 4-point interaction, respectively, to see the role of each term, and find that the 4-point interaction plays the dominant role of the diquark self-energy. From the above two different cases, quarks and diquarks, we guess that the mass generation of colored particles is a general result of non-perturbative gluonic dressing effect. As a topic of “quantum color dynamics”, we study various mass generation of colored particles and gluonic dressing effect in a non-perturbative manner, using the Schwinger-Dyson (SD) formalism in (scalar) QCD. First, we review dynamical quark-mass generation in QCD in the SD approach as a typical fermion-mass generation via spontaneous chiral-symmetry breaking. Second, using the SD formalism for scalar QCD, we investigate the scalar diquark, a bound-state-like object of two quarks, and its mass generation, which is clearly non-chiral-origin. Here, the scalar diquark is treated as an extended colored scalar field, like a meson in effective hadron models, and its effective size R is introduced as a form factor. As a diagrammatical difference, the SD equation for the scalar diquark has an additional 4-point interaction term, in comparison with the single quark case. The diquark size R is taken to be smaller than a hadron, R ~ 1 fm, and larger than a constituent quark, R ~ 0.3 fm. We find that the compact diquark with R ~ 0.3 fm has a large effective mass of about 900 MeV, and therefore such a compact diquark is not acceptable in effective models for hadrons. We also consider the artificial removal of 3- and 4-point interaction, respectively, to see the role of each term, and find that the 4-point interaction plays the dominant role of the diquark self-energy. From the above two different cases, quarks and diquarks, we guess that the mass generation of colored particles is a general result of non-perturbative gluonic dressing effect.
作者 Shotaro Imai Hideo Suganuma Shotaro Imai;Hideo Suganuma(Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan;Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan)
出处 《Journal of Modern Physics》 2016年第8期790-805,共16页 现代物理(英文)
关键词 Dynamical Mass Generation DIQUARKS Schwinger-Dyson Formalism QCD Dynamical Mass Generation Diquarks Schwinger-Dyson Formalism QCD
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部