期刊文献+

Structure Mechanism of Ordinary Matter Mass Formation

Structure Mechanism of Ordinary Matter Mass Formation
下载PDF
导出
摘要 The famous paradoxes of quantum mechanics are created by the fact that elementary particles exist as the alternation between two structural states with different properties. This leads to probabilistic behavior, uncertainty principle, quantum tunneling, etc. The alternation of states plays the role of the frequency generator or clock. But for the objective character of quantum interactions the length standard also should exist in nature. Such analog of the rule must be physically real and in direct sense have to participate in the of particles interactions. Just this is the main role of physical vacuum. For such role vacuum should have quasi-crystalline geometry structure. Its symmetry requires in standard views only one fundamental change. In the quasicrystalline structure of the vacuum, the virtual shells of the real particles and atomic nuclei are not diffuse “clouds”, as is assumed today. Virtual environments are clearly structured and rigidly quantised shells with the geometric structure similar to fullerenes. Such shells are forming for greater than 99% of the known substance mass. Virtual particles forming such shells belong to the group of bosons and probably are just Higgs bosons existing in the ordinary matter. Chemical fullerenes form a series of discrete geometric structures. In a similar manner virtual analogues of fullerenes form a series of discrete masses, which really exist in the nature as a set of elementary particles and atomic nuclei masses. The famous paradoxes of quantum mechanics are created by the fact that elementary particles exist as the alternation between two structural states with different properties. This leads to probabilistic behavior, uncertainty principle, quantum tunneling, etc. The alternation of states plays the role of the frequency generator or clock. But for the objective character of quantum interactions the length standard also should exist in nature. Such analog of the rule must be physically real and in direct sense have to participate in the of particles interactions. Just this is the main role of physical vacuum. For such role vacuum should have quasi-crystalline geometry structure. Its symmetry requires in standard views only one fundamental change. In the quasicrystalline structure of the vacuum, the virtual shells of the real particles and atomic nuclei are not diffuse “clouds”, as is assumed today. Virtual environments are clearly structured and rigidly quantised shells with the geometric structure similar to fullerenes. Such shells are forming for greater than 99% of the known substance mass. Virtual particles forming such shells belong to the group of bosons and probably are just Higgs bosons existing in the ordinary matter. Chemical fullerenes form a series of discrete geometric structures. In a similar manner virtual analogues of fullerenes form a series of discrete masses, which really exist in the nature as a set of elementary particles and atomic nuclei masses.
作者 Sergey N. Golubev Sergey N. Golubev(Laboratory of Quantum Standards, All-Russian Research Institute of Metrological Service, Moscow, Russia)
出处 《Journal of Modern Physics》 2016年第9期875-891,共17页 现代物理(英文)
关键词 Quantum Mechanics Physical Vacuum Quasi-Crystalline Structure Mass Formation Dark Matter Higgs Bosons GRAVITATION Quantum Mechanics Physical Vacuum Quasi-Crystalline Structure Mass Formation Dark Matter Higgs Bosons Gravitation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部