摘要
Relativistic diffraction in time wave functions can be used as a basis for causal scattering waves. We derive such exact wave function for a beam of Dirac and Klein-Gordon particles. The transient Dirac spinors are expressed in terms of integral defined functions which are the relativistic equivalent of the Fresnel integrals. When plotted versus time the exact relativistic densities show transient oscillations which resemble a diffraction pattern. The Dirac and Klein-Gordon time oscillations look different, hence relativistic diffraction in time depends strongly on the particle spin.
Relativistic diffraction in time wave functions can be used as a basis for causal scattering waves. We derive such exact wave function for a beam of Dirac and Klein-Gordon particles. The transient Dirac spinors are expressed in terms of integral defined functions which are the relativistic equivalent of the Fresnel integrals. When plotted versus time the exact relativistic densities show transient oscillations which resemble a diffraction pattern. The Dirac and Klein-Gordon time oscillations look different, hence relativistic diffraction in time depends strongly on the particle spin.
作者
Salvador Godoy
Karen Villa
Salvador Godoy;Karen Villa(Depto de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico)